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1 Problem

Discuss how the electric field vanishes inside a perfect conductor according to “all” definitions
of this concept, while the interior magnetic field vanishes only under some definitions.

2 Solution

This problem depends on the concept of a conductor, and of a perfect conductor.

2.1 Historical Concepts of Conductors

2.1.1 Gray

The phenomenon of conduction of electricity may have been first reported by Gray in 1731
[1], who described experiments on the “conveyance” and “communication” of electricity
(including evidence that people conduct electricity).1

2.1.2 Desaguliers

In 1739, Desaguliers [3] (a coworker of Gray) coined the term “conductor”, as well as the
term “insulator”.

2.1.3 Priestley

In his History of Electricity, vol. II, p. 3, Priestley [4] mentioned conductors and perfect
conductors, defining these by example:

1For a historical survey of research into electricity in this era, see, for example, [2].

1



All known substances are distributed by electricians into two sorts. Those of one sort are
termed electrics, or non-conductors; and those of the other non-electrics, or conductors of
electricity.
Metals of all kinds, together with semimetals, and water are conductors. So also is charcoal,
and other substances of a similar nature, as will be shewn at large in the last part of this
work. All other substances, whether mineral, vegetable, or animal, are non-conductors. But
many of these when they are made very hot, as glass, rosin, baked wood, and, perhaps, all
the rest on which the experiment can be made in this state, are conductors of electricity.
All bodies, however, though in the same state of heat and cold, are not equally perfect
electrics, or perfect conductors.

2.1.4 Cavendish

Cavendish (1771) may be the first to have attempted a definition of a conductor, on p. 649
of [5]:2

It appears from experiment, that some bodies suffer the electric fluid to pass with great
readiness between their pores; while others will not suffer it to do so without great difficulty;
and some hardly suffer it to do so at all. The first sort of bodies are called conductors, the
others non-conductors. What this difference in bodies is owing to I do not pretend to
explain.
...
It is evident that the electric fluid in conductors may be considered as movable, or answers
to the definition given of that term in p. 588. As to the fluid contained in non-conducting
substances, though it does not absolutely answer to the definition of immoveables, as it is
not absolutely confined from moving, but only does so with great difficulty; yet it may in
most cases be looked upon as such without sensible error.
...
Air does in some measure permit the electric fluid to pass through it; though, if it is dry,
it lets it pass but very slowly, and not without difficulty; it is therefore to be called a
nonconductor. It appears that conductors would readily suffer the fluid to run in and out
of them, were it not for the air which surrounds them: for if the end of a conductor is
inserted into a vacuum, the fluid runs in and out of it with perfect readiness; but when it
is surrounded on all sides by the air, as no fluid can run out of it without running into the
air, the fluid will not do so without difficulty.

Cavendish’s statement that the “electric fluid” would readily flow from a conductor into
vacuum was a speculation, not based on experiment. As such, Cavendish is atypical in
supposing that a vacuum is a kind of conductor.

2.1.5 Poisson

In 1812, Poisson [7] offered a definition similar to that of Cavendish:

Tous les corps de la nature ne se comportent pas de la même manière par rapport au fluide
électrique: les uns, comme les métaux, ne paraissent exercer sur lui aucune espèce d’action;
ils lui permettent de se mouvoir librement dans leur intérieur et de les traverser dans tous
les sens: pour cette raison on les nomme corps conducteurs. D’autres, au contraire, l’air
très-sec, par exemple, s’opposent au passage du fluide électrique dans leur intérieur, de sorte
qu’ils servent à empêcher le fluide accumulé dans les corps conducteurs de se dissiper dans
l’espace.

2An unfortunate typographical error was corrected by Maxwell in his edition of Cavendish’s Electrical
Researches, p. 44 of [6].
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2.1.6 Ohm

In 1827, Ohm published a treatise [8, 9] containing his famous law, in a form closer to

J = σE, (1)

where J is the electric current density and E is the electric field, both inside the rest frame
of a medium with electrical conductivity σ, than to more familiar form, V = IR, where V
is the potential difference across an electrical resistance R that carries electric current I .

Ohm did not define a conductor so much a provide a model for it, with a flavor that
electric current is related to the motion of particles. This view became characteristic of the
German school in the mid 1800’s, but was not taken up by the English or French until much
later.

2.1.7 Green

In 1828, Green spoke of a perfect conductor on p. 22 of [10]:

It has been long known from experience, that whenever the electric fluid is in a state of
equilibrium in any system whatever of perfectly conducting bodies, the whole of the electric
fluid will be carried to the surface of those bodies, without the smallest portion of electricity
remaining in their interior...

2.1.8 Thomson

W. Thomson wrote in 1848, p. 131 of [11]:3

8. A very extensive class of bodies in nature, including all the metals, many liquids, &c. are
found to possess the property that in all conceivable circumstances of electrical excitation,
the resultant force at any point within their substance vanishes. Such bodies are called con-
ductors of electricity, since they are destitute of the property, possessed by non-conductors,
of retaining permanently, by resistance to every change, any distribution of electricity ar-
bitrarily imposed; the only kind of distribution which can exist unchanged for an instant
being such as satisfies the condition that the resultant force must vanish in the interior.

An interpretation of Thomson’s statements is that for a perfect conductor of zero electrical
resistance (infinite electrical conductivity σ), Ohm’s law (1) implies that the interior electric
field E is zero, to avoid that the current density J be infinite.

In 1848, Thomson also stated a theorem that the energy of a static system at equilibrium
is a minimum (see p. 87 of [12]), and implied that this should hold for both electrostatics
and magnetostatics, among other systems. A corollary of this theorem is that a conductor
(including a perfect conductor, whatever that may be) should be in a state of minimum
energy when at equilibrium.

2.1.9 Maxwell

Maxwell gave a more crisp definition of a conductor in Art. 72 of his Treatise [13]:

A conductor is a body which allows the electricity within it to move from one part of the
body to another when acted upon by electromotive force.

3Thomson’s rambling definition is an early sign that different people may have different conceptions of
conductors.
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In Maxwell’s conception, a conductor must have “electricity within it”, and he considered
that solids and liquids can be conductors, but not gases in their usual state. Only later did
ionized gases/plasmas come to be considered as conductors.

Maxwell immediately continued in Art. 72:4

When the electricity is in equilibrium there can be no electromotive intensity acting with
the conductor. Hence E = 0 throughout the whole space occupied by the conductor.

In Art. 840 of his Treatise [14] Maxwell stated:

We have proved in Art. 654, that a closed sheet of perfectly conducting matter of any form,
originally free from currents, becomes when exposed to external magnetic force, a current-
sheet, the action of which on every point of the interior is such as to make the magnetic
force zero.

Maxwell’s argument in Arts. 654-655 is essentially that the electric field is related by

E = −∇V − ∂A

∂t
, (2)

in SI units, where V and A are the electric scalar and vector potentials, respectively. Inside
a perfect conductor, where E = 0, the vector potential A must be independent of time.
Hence, for any loop on the surface of the perfect conductor,

∮
A · dl =

∫
B · dArea is also

constant in time. If B is initially zero inside the perfect conductor, it remains so no matter
what changes occur externally.

Maxwell’s argument leaves open the possibility that a perfect conductor could have an
initial, nonzero, interior magnetic field.

It seems reasonably clear that in Maxwell’s time people regarded the notion of a perfect
conductor as an idealization, approximated in Nature only by conductors of large, but not
infinite, conductivity. However, in Art. 833 of his Treatise, Maxwell speculated that the
“magnetic molecules” of permanent magnets might be perfect conductors:

We have therfore to consider the hypothesis of Ampère, that the magnetism of the molecules
is due to an electric current constantly circulating in some closed path within it.
...
By confining the circuits to the molecules, within which nothing is known about resistance,
we may assert, without fear of contradiction, that the current, in circulating within the
molecule, meets with no resistance.

In Art. 575 of his Treatise, Maxwell noted that the “magnetic molecules” might contain
angular momentum, and he reports negative results from an experimental search for this
effect.

2.1.10 Kamerlingh Onnes

In 1911, Kamerlingh Onnes [15] found that mercury at liquid-helium temperature has im-
measurably small electrical resistance, which phenomenon has come to be called supercon-
ductivity (first called supraconductivity).

Is a superconductor a physical realization of a perfect conductor?

4Maxwell actually used the scalar symbol R for the electromotive intensity = magnitude of the electric
field E.
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2.1.11 The Magnetization of Iron is Not a Classical Effect

In the 1900’s various people [16, 17, 18] pursued Maxwell’s comment that permanent mag-
netism might be associated with angular momentum. Einstein may have been the first to
note the classical argument that if a current loop is due to electric charges e with mass M ,
the angular momentum L is related to the magnetic moment m by

m =
e

2M
L. (3)

After some time, the experimental results converged on a value of the angular momentum
associated with magnetization of iron being twice that predicted by eq. (3); see [19] for a
review. This discrepancy was explained as a quantum effect associated with electron spin
[20] by Dirac [21].

2.1.12 Meissner

In 1933, Meissner and Ochsenfeld [22] observed that superconductors are diamagnetic, with
“zero” interior magnetic field (although the field penetrates slightly below the surface of a
superconductor). In particular, if a body has an internal magnetic field when warm, this
field is expelled from the interior when the body becomes superconducting on being cooled.

This contrasts with the open issue of Maxwell, that a perfect conductor might in principle
have an initial, nonzero, interior magnetic field.

2.1.13 Alfvén

In 1942, Alfvén [23] considered the transition of a gas to a plasma in the case that an initial
magnetic field existed in the gas volume. The electrical conductivity of a plasma is very
large, so one can often usefully approximate a plasma as a perfect conductor.

Alfvén gave a briefer version of Maxwell’s argument, noting that with E = 0 inside a
perfect conductor, Faraday’s law tells us,

∇× E = −∂B

∂t
= 0, (4)

such that the magnetic field in a plasma need not be zero, but can be “fastened” or “frozen in”
as a time-independent (but spatially varying) field during/after the creation of the plasma.

Alfvén was primarily interested in electromagnetic waves in a plasma, which could not
exist if the electric field were zero and the magnetic field independent of time inside a
plasma. That is, Alfvén regarded the notion of “frozen-in” lines of force as only a useful
approximation for plasmas, while other people consider this behavior to be an exact property
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of perfect conductors.5,6

The transition of a gas to a plasma involves ionization of the gas molecules, a process
that is not well described by “classical” electrodynamics. Hence, Alfvén’s “frozen-in” field
lines of plasmas are, strictly speaking, an aspect of quantum electrodynamics. However,
once a plasma is created, one can analyze it largely via “classical” concepts (with scattering
and recombination of the plasma ions being exceptions to this).

Thus, the question is left open as to whether a perfect conductor in “classical” electro-
dynamics can have a nonzero, interior magnetic field.

2.1.14 Fiolhais et al.

Recalling Thomson’s argument of 1848 ([12]; sec. 2.1.8 above) that a (classical) system in
equilibrium should be a state of minimum energy, we expect both the electric and magnetic
fields associated with an isolated, perfect conductor to be zero, since nonzero fields imply
nonzero field energy. Hence, if we suppose that “classical” electrodynamics respects Thom-
son’s minimum-energy condition, a perfect conductor in zero external fields has magnetic
field everywhere zero. If the conductor is later subject to external magnetic fields, surface
currents must be induced on the perfect conductor so as to cancel the external magnetic field
inside the conductor. That is, a perfect conductor in this vision of “classical” electrodynamics
is diamagnetic, and has no permanent magnetic moment.

The above argument has been formalized in [28], where a “magnetic” version of Thom-
son’s energy-minimum theorem was deduced.

2.2 Comments

In essentially all conceptions of a perfect conductor, the interior electric field is zero, and the
interior magnetic field is time-independent (in the rest frame of the conductor).

In a vision of “classical” electrodynamics (following W. Thomson [12]) where the initial
conditions do not include nonzero sources of energy, the interior magnetic field of a perfect
conductor is also zero.

5A noteworthy extrapolation of Alfén’s views was given by Sweet in 1956 [24], when he argued for the
phenomenon of “magnetic reconnection”, using as an example a perfect conductor from which two bundles
of field lines emerged and into which two other bundles penetrated.

A subsequent paper by Parker [25] clarified that if the fields lines move with respect to the conductor (as
for solar flares), it cannot be a perfect conductor. See also, [26].

6Henyey [27] argued that there is a “distinction between a perfect conductor and a superconductor”,
contrasting the “frozen-in” field lines of a plasma (regarded by Henyey, but not by Alfvén, as an example of
a perfect conductor) with the Meissner effect for superconductors. As noted below, this distinction is in a
quantum context.
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In a broader vision of (quantum) electrodynamics, where “initial” conditions can include
nonzero energy, the interior magnetic field of a perfect conductor can be nonzero, but time-
independent, in the rest frame of the conductor.

A major challenge for “classical” electrodynamics is to provide a description of the ob-
served magnetism of materials.

Maxwell remarked in Art. 831 of his Treatise:

Whether this matter is or is not electricity, whether it is a continuous fluid interpenetrating
the spaces between molecular nuclei, or is itself molecularly grouped; or whether all matter
is continuous, and molecular heterogeneousness consists in finite vortical or other relative
motions of contiguous parts of a body; it is impossible to decide, and perhaps in vain to
speculate, in the present state of science.

Feynman took a stronger stance [29]:

...it is not possible to understand the magnetic effects of materials in any honest way from
the point of view of classical physics. Such magnetic effects are a completely quantum-
mechanical phenomenon. It is, however, possible to make some phoney classical arguments
and to get some idea of what is going on.

Despite such cautions, some people find it convenient to associate permanent magnetism
with perfect conductors with “frozen-in” magnetic fields and corresponding nonzero magnetic
moments, ignoring the experimental evidence (sec. 2.1.11) that this view is not viable.

The view of this author is that it’s better to adopt Thomson’s vision of “classical” elec-
trodynamics as obeying an energy-minimum principle, sec. 2.1.8 above, and to acknowledge
that a detailed understanding of magnetic materials is beyond the scope of “classical” elec-
trodynamics.

2.3 Boundary Conditions at the Surface of a Perfect Conductor

It follows from Faraday’s law, eq. (4), that the tangential component of the electric field is
continuous across a surface, so the requirement that the electric field be zero inside a perfect
conductor implies that the electric field at the surface of a perfect conductor can only be
perpendicular to it. Then, that surface supports a surface charge density σ = ε0E⊥.

The normal component of the magnetic field B is continuous across any surface (since
∇ · B = 0), so in the view that the magnetic field is zero inside a perfect conductor, the
magnetic field at the surface of a perfect conductor can only have a tangential component.7

The perfect electric conductor (PEC) boundary conditions are

E‖ = 0, B⊥ = 0 (PEC). (5)

2.4 Perfect Magnetic Conductor

The concept of a perfect magnetic conductor is sometimes discussed.

7In the view that the magnetic field can be nonzero, but independent of time, inside a perfect conductor,
the magnetic field at the surface of a perfect conductor can only have a normal component that is independent
of time. In both views, there can be no time-independent, normal component of the magnetic field at the
surface of a perfect conductor.
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2.4.1 Both Electric and Magnetic Charges Exist

The context for this would seem to be that magnetic “charges” (monopoles) could exist in
Nature, together with electric charges, and ∇ · B = 4πρm, where the volume density ρm of
magnetic charge can be nonzero.

When Heaviside first presented Maxwell’s equations in vector notation [30] he considered
assumed that in addition to electric charge and current densities, ρe and Je, there existed
magnetic charge and current densities, ρm and Jm,8 although there remains no experimental
evidence for the latter.9,10 Maxwell’s equations for microscopic electrodynamics are then (in
SI units),11

∇ · ε0E = ρe, ∇ · B

μ0

= ρm, −c2∇ × ε0E =
∂

∂t

B

μ0

+ Jm, ∇ × B

μ0

=
∂ε0E

∂t
+ Je, (6)

The surface of a perfect (electric) conductor could support a surface density σm of mag-
netic charge, and the magnetic field B could have a nonzero normal component at the
surface. That surface could also have density of magnetic current density Jm, and Faraday’s
law would now be,

∇× E = −μ0Jm − ∂B

∂t
= 0, (7)

and the electric field could have a nonzero tangential component just outside the surface of
a perfect electric conductor.

That is, if magnetic charges exist (as well as electric charges), there would be no “bound-
ary conditions” at the surface of a perfect electric conductor.12

Similarly, if both electric and magnetic charges exist, there would be no “boundary
conditions” at the surface of a perfect magnetic conductor.

However, the magnetic field in the interior of a perfect magnetic conductor must be zero,
and following the view of Thomson, sec. 2.1.8 above, the electric field in the interior of a
perfect magnetic conductor must also be zero.

8For a review of Maxwell’s equations in the case that magnetic charges exist, see [32].
9Heaviside seems to have regarded magnetic charges as “fictitious”, as indicated on p. 25 of [33].

10If the interaction of magnetic charges with magnetic moments due to electrical currents is to conserve
energy, the magnetic charges must be at the end of “strings” of magnetic flux, as first postulated by Dirac
[34, 35].

11Maxwell called ∂D/∂t the electric displacement current (density), p. 14 of [36]. Heaviside called
∂(B/μ0)/∂t the magnetic displacement current (density), or just the magnetic current, in [37].

The notion of a magnetic current was used in some early discussions of vector diffraction theory, by Love
[38], and by Macdonald, sec. 14 of [39] and p. 95 of [40]. See also p. 93 of [41] and p. 69 of [42].

As discussed in [32], if magnetic charges exist, there can be a density Mm of magnetic dipoles due to pairs
of opposite magnetic charges, and one should define the auxiliary field Hm = B/μ0 + Mm. This contrasts
with the usual field H = B/μ0 − Me, where Me is the density of magnetic dipoles due to electric current
loops. Then, the magnetic displacement current would be ∂Hm/∂t.

12The extensive success in comparisons of experiment with analyses of electromagnetic problems using
the perfect-conductor boundary conditions is yet more evidence that magnetic charges are not common, if
they exist at all, in Nature.
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2.4.2 Only Magnetic Charges Exist

If only magnetic charges existed, and not electric charges, then Maxwell’s equations for
microscopic electrodynamics would be (in SI units),

∇ · ε0E = 0, ∇ · B

μ0

= ρm, −c2∇ × ε0E =
∂

∂t

B

μ0

+ Jm, ∇× B

μ0

=
∂ε0E

∂t
. (8)

The only conductors would be those that support the flow of magnetic charge, i.e., magnetic
currents. A perfect magnetic conductor would have zero interior magnetic and (in most
views) zero interior electric field.13

It follows from the fourth Maxwell equation of (8), that the tangential component of the
magnetic field is continuous across a surface, so the requirement that the magnetic field be
zero inside a perfect magnetic conductor implies that the magnetic field at the surface of a
perfect magnetic conductor can only be perpendicular to it. Then, that surface supports a
surface magnetic charge density σm = B⊥/μ0.

The normal component of the electric field E would be continuous across any surface
(since ∇ · E = 0), so in the view that the electric field is zero inside a perfect magnetic
conductor, the electric field at the surface of a perfect conductor can only have a tangential
component.

The boundary conditions for fields just outside a perfect magnetic conductor (PMC)
would be,

B‖ = 0, E⊥ = 0 (PMC, if only magnetic charges). (9)

Of course, if only magnetic charges existed, would could call these charges “electric”, and
also rename the electric field as the “magnetic” field, and the magnetic field as the “ electric”
field, such that the case of only magnetic charges is in effect the same as the case of only
electric charges.14 As such, the conditions (9), under the assumption that only magnetic
charges exist, don’t have independent physical content from the perfect-electric-conductor
boundary conditions (5), and eq. (9) is seldom discussed in the literature.

2.4.3 Only Electric Charges Exist

If magnetic charges do exist in Nature, they are so rare as to have never been observed.
Many electrical engineers assume that magnetic charges do not exist, and use the term
perfect magnetic conductor to mean a material whose only charges are electric, and which
obeys the conditions,

Dinterior = 0 = Hinterior (PMC, but only electric charges). (10)

Fields just outside the surface of such a material obey the boundary conditions,

D⊥ = 0 = H‖ (PMC, but only electric charges), (11)

13Ohm’s law would have the form Jm = ςmB, where ςm is the magnetic conductivity, which would be
infinite for a perfect magnetic conductor.

14See, for example, p. 274 of [43] for discussion of duality transformations of electric and magnetic fields.
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This usage may have originated on p. 107 of [42], where the boundary conditions were
given for E and H.15 It also appeared on p. 34 of [44], where only the conditions on H
were mentioned. An early textbook discussion of magnetic currents and “perfect magnetic
conductors” is in sec. 7.1 of [46], but here (and in subsequent electrical-engineering literature)
the boundary conditions are written in terms of D and H rather than E and H. See also
chap. 7 of [47]. The attitude seems to be that although magnetic charges do not exist,
there can exist magnetic surface currents (which would seem to require moving magnetic
charges).16,17

While the concept a “perfect magnetic conductor” as used in the engineering community
is formally inconsistent, its usage is generally restricted to surfaces and that are in vacuum,
with a goal of describing the electromagnetic fields on one side of that surface in terms of
“fictitious” sources on that surface, in the spirit of Huygens [51] and Kirchhoff [52]. With this
restriction, use of “perfect magnetic conductors” can lead to (approximately) valid results
for examples in which only electric charges exist.18

An example of recent usage is in sec. I of [54]. An engineered material that approximates
the surface of a perfect magnetic conductor is reported in [55].
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