NuStorm target and facility
D Adey

2nd PASI meeting, Rutherford Appleton Laboratory
4th April 2013
Contents

• Concept
• Motivations/Benefits
• Accelerator complex
• Implementation
• Material taken from NuStorm workshops at Fermilab (Sept 12), Imperial college (Nov 12) and CERN (Mar 13)
Neutrinos from STOREd Muons

- 60-120 GeV POT
- Pion capture
- Transport line and injection
- $\pi \rightarrow \mu$ decays in ring
- μ storage for ~ 70 turns

$$N\mu = (\text{POT}) \times (\pi/\text{POT}) \times \varepsilon_{\text{collection}} \times \varepsilon_{\text{inj}} \times$$
$$\frac{\mu}{\pi} \times A_{\text{dynamic}} \times \Omega$$

- 10^{21} POT in 5 years of running @ 60 GeV in Fermilab PIP era
- 0.1 π/POT
- $E_{\text{collection}} = 0.8$
- $E_{\text{inj}} = 0.8$
- $\mu/\pi = 0.08$ (yct $\times \mu$ capture in $\pi \rightarrow \mu$ decay) [π decay in straight]
- $A_{\text{dynamic}} = 0.75$ (FODO)
- $\Omega = $ Straight/circumference ratio (0.43) (FODO)

1.7 X 10^{18} useful μ decays

Precise flux with known flavour content
v physics motivations

Cross sections (Boyd)

- Cross sections in few GeV range not as well known as low or high energies
- One of the largest systematic errors for oscillation experiments
- No realistic standard candle
- Old data is proving difficult to interpret

Sterile neutrinos (Parke)

- Gallium: 2.7σ evidence for ν_e disappearance
- LSND: 3.8σ evidence for $\bar{\nu}_e$ appearance
- MiniBooNE: 3.8σ evidence for ν_e and $\bar{\nu}_e$ appearance
- Reactor: 3.0σ evidence for $\bar{\nu}_e$ disappearance
- LEP limits to 3 light, interacting neutrinos

Giunti arXiv:1106.4479

Oscillation with only 3ν and $\sin^2 2\theta_{13} = 0.06$

Oscillation with 4ν and one $\Delta m^2 \gg 1\text{ eV}^2$
Target
(Striganoff)

- 100KW (prepare for 400KW) 60GeV from main injector
- Graphite target within NuMI-like horn
- Li lens would be beyond state of art
- MARS studies suggest 0.1 pions / POT
- Significant irradiation of first quadrupoles in transport line

<table>
<thead>
<tr>
<th>Magnet Name</th>
<th>Length (mm)</th>
<th>Distance to horn (From End of Magnet, mm)</th>
<th>Strength (T/m)</th>
<th>Beam pipe radius (mm)</th>
<th>Estimated pole-tip field (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>500</td>
<td>700</td>
<td>6.00</td>
<td>200</td>
<td>1.22</td>
</tr>
<tr>
<td>Q2</td>
<td>900</td>
<td>1800</td>
<td>-10.18</td>
<td>200</td>
<td>2.04</td>
</tr>
<tr>
<td>Q3</td>
<td>900</td>
<td>2900</td>
<td>15.37</td>
<td>200</td>
<td>3.07</td>
</tr>
<tr>
<td>Q4</td>
<td>500</td>
<td>3716</td>
<td>-14.77</td>
<td>200</td>
<td>2.95</td>
</tr>
<tr>
<td>Q6</td>
<td>500</td>
<td>7600</td>
<td>-12.06</td>
<td>200</td>
<td>2.41</td>
</tr>
<tr>
<td>B1</td>
<td>2400</td>
<td>6884</td>
<td>-</td>
<td>width=400</td>
<td>1.213</td>
</tr>
<tr>
<td>Q11</td>
<td>900</td>
<td>8700</td>
<td>10.27</td>
<td>200</td>
<td>2.05</td>
</tr>
<tr>
<td>B2</td>
<td>800</td>
<td>9715</td>
<td>-</td>
<td>width=400</td>
<td>2.00</td>
</tr>
<tr>
<td>Q14</td>
<td>900</td>
<td>12041</td>
<td>-9.70</td>
<td>200</td>
<td>-1.94</td>
</tr>
<tr>
<td>Q15</td>
<td>900</td>
<td>13141</td>
<td>9.67</td>
<td>200</td>
<td>1.93</td>
</tr>
<tr>
<td>Q7A</td>
<td>500</td>
<td>16074</td>
<td>-10</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>B1</td>
<td>2400</td>
<td>18724</td>
<td>-</td>
<td>width=400</td>
<td>1.213</td>
</tr>
<tr>
<td>Q9</td>
<td>250</td>
<td>19224</td>
<td>10</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>material</td>
<td>momentum (GeV/c)</td>
<td>±15%</td>
<td>±10%</td>
<td>±5%</td>
<td>target length (cm)</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Carbon</td>
<td>3</td>
<td>0.085</td>
<td>0.056</td>
<td>0.028</td>
<td>27.3</td>
</tr>
<tr>
<td>Carbon</td>
<td>5</td>
<td>0.099</td>
<td>0.067</td>
<td>0.033</td>
<td>32.2</td>
</tr>
<tr>
<td>Inconel</td>
<td>3</td>
<td>0.131</td>
<td>0.087</td>
<td>0.044</td>
<td>19.2</td>
</tr>
<tr>
<td>Inconel</td>
<td>5</td>
<td>0.136</td>
<td>0.091</td>
<td>0.045</td>
<td>27.0</td>
</tr>
<tr>
<td>Tantalum</td>
<td>3</td>
<td>0.164</td>
<td>0.109</td>
<td>0.054</td>
<td>15.3</td>
</tr>
<tr>
<td>Tantalum</td>
<td>5</td>
<td>0.161</td>
<td>0.107</td>
<td>0.053</td>
<td>21.3</td>
</tr>
<tr>
<td>Gold</td>
<td>3</td>
<td>0.177</td>
<td>0.118</td>
<td>0.059</td>
<td>18.0</td>
</tr>
<tr>
<td>Gold</td>
<td>5</td>
<td>0.171</td>
<td>0.112</td>
<td>0.056</td>
<td>21.0</td>
</tr>
</tbody>
</table>

![Graph 1](image1)

![Graph 2](image2)
Radiation hard magnets (Cozzolino - BNL)

- High temperature and radiation tolerant quadrupoles under investigation at Brookhaven
Capture and injection

(Liu)

- Stochastic injection of pions into decay ring
- Dual optics for 5GeV pions and 3.8GeV muons
- High energy muons can be passed through a degrader to provide a low energy muon beam for further use
• Different arc lengths for injection and return arcs
• 150m non-parallel straights

\[\beta \gamma \approx 37 \rightarrow A_N = A \beta \gamma = 74 \text{ mm rad} \]
• Momentum: \(\sigma \Delta p/p = 0.08 \)
• 35% dynamic lost after 70 turns (no decays)
FFAG decay ring
(Pasternak)

Simulation studies for FFAG decay ring, suggest:
● 1mmrad non-normalised acceptance
● 26% momentum spread achievable
● 0.7% losses after 60 turns

Experimental tests of straight FFAG at KURRI
Implementation at Fermilab
(Geelhoed)

• Use MI abort line
• Far detector hall in D0 assembly building
• Beamline layout, costing, component search, safety planning
• Integration with MI cycle
Implementation at CERN (Wildner)

- Use SPS at 60GeV
- 10μs pulse (compared to 2μs at FNAL)
- Use North area
- Proportion of preparatory work not site specific
Summary

- Work on sterile search and cross section physics potential
- Proton source, target, capture, injection and decay ring work
- Implementation at sites at Fermilab and CERN
- LOI submitted to Fermilab, EOI in preparation for CERN
Questions?