Bucked Coils Lattice

Androula Alekou, Pasternak Jaroslaw, Chris Rogers

RAL
androula.alekou08@ic.ac.uk
9 Nov 2010
Outline

• Aim
• Bucked Coils Configuration
• Bz
• Tracking results analysis: Bucked Coils vs FS2A
• Summary and Future Plans
Aim

Find a cooling lattice with lower Bz at position of RF’s and higher transmission than FS2A
Bz comparison to FS2A

Bucked Coils:
- Peak: 2.7 T
- Edge of RF: 1 T
- Peak/Edge = 2.7

FS2A:
- Peak: 2.8 T
- Edge of RF: 2.3 T
- Peak/Edge = 1.2

Beta4D (mm) vs P (MeV/c):
- Linear relation between Beta and P

P resonance ~125 MeV/c

Pmean = 232 MeV/c
Input beam specifications (same for FS2A and Bucked Coils):
• 1000 particles
• \(\langle P \rangle \) 232 MeV/c
• 10 mm Transverse Emittance
• 0.07 ns Longitudinal Emittance
Red: Bucked Coils, No Cuts
Blue: FS2A, No Cuts
Cuts

Applying P and R cuts on every plane:

• Any particles that don’t make the P cuts will not be taken into account on that specific plane but will still be taken into account further downstream.
 • P±20% or
 • P±100 MeV/c

• Any particles that don’t make the R cuts will not be taken into account on the specific plane or further downstream.
 • R<30 cm

Symbol in following plots: NU (Non Uniform cuts)

No cuts of R or P, but only track particles that made it to the end.
Symbol in following plots: 2E (To the End)

Androula Alekou, Front End Meeting
Note that although both beams should start with same $<E> = 254.65$ (i.e. 232 MeV/c), there is a small difference at the energy start point between FS2A and Bucked. Also different start point at Emit4D and EmitLong. This is due to the Beta4D difference.
FS2A P distribution (No Cuts Applied)

\[P(232) \pm 20\% = 185.6 < P < 278.4 \text{ MeV/c} \]
\[P(232) \pm 100 \text{ MeV/c} = 132 < P < 332 \text{ MeV/c} \]
Bucked P distribution (No Cuts Applied)

\[P(232) \pm 20\% = 185.6 < P < 278.4 \text{ MeV/c} \]
\[P(232) \pm 100 \text{ MeV/c} = 132 < P < 332 \text{ MeV/c} \]

Pinit
- Entries: 1000
- Mean: 230.6
- RMS: 20.17

Pmid
- Entries: 790
- Mean: 248.7
- RMS: 24.14

Pend
- Entries: 695
- Mean: 247.2
- RMS: 26.84
R distribution for FS2A and Bucked (No Cuts Applied)

R<30 cm

FSA2 R distribution

Bucked R distribution

<table>
<thead>
<tr>
<th>Rmid</th>
<th>FSA2 R distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rinit</td>
</tr>
<tr>
<td></td>
<td>Entries 1000</td>
</tr>
<tr>
<td></td>
<td>Mean 80.33</td>
</tr>
<tr>
<td></td>
<td>RMS 41.58</td>
</tr>
<tr>
<td></td>
<td>Rmid</td>
</tr>
<tr>
<td></td>
<td>Entries 701</td>
</tr>
<tr>
<td></td>
<td>Mean 50.19</td>
</tr>
<tr>
<td></td>
<td>RMS 26.79</td>
</tr>
<tr>
<td></td>
<td>Rend</td>
</tr>
<tr>
<td></td>
<td>Entries 544</td>
</tr>
<tr>
<td></td>
<td>Mean 46.68</td>
</tr>
<tr>
<td></td>
<td>RMS 24.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rmid</th>
<th>Bucked R distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rinit</td>
</tr>
<tr>
<td></td>
<td>Entries 1000</td>
</tr>
<tr>
<td></td>
<td>Mean 90.42</td>
</tr>
<tr>
<td></td>
<td>RMS 46.18</td>
</tr>
<tr>
<td></td>
<td>Rmid</td>
</tr>
<tr>
<td></td>
<td>Entries 790</td>
</tr>
<tr>
<td></td>
<td>Mean 59.15</td>
</tr>
<tr>
<td></td>
<td>RMS 30.38</td>
</tr>
<tr>
<td></td>
<td>Rend</td>
</tr>
<tr>
<td></td>
<td>Entries 695</td>
</tr>
<tr>
<td></td>
<td>Mean 59.86</td>
</tr>
<tr>
<td></td>
<td>RMS 33</td>
</tr>
</tbody>
</table>
P distribution Bucked/FS2A
Radius Distribution
4D Amplitude

Androula Alekou, Front End Meeting
Conclusions

- Bucked Coils have lower Bz than FS2A at the position of RF’s
- Transmission is better
- Emittance 4D reduction:
 - 1.79 (or 1.93 depending on cut) for Bucked Coils, 2.32 for FS2A
- Unless only particles that made it to the end are taken into account for the tracking results, longitudinal emittance of Bucked Coils has peaks (they disappear when changing cuts): Peaks are due to particles that go to infinity increasing in this way the average emittance.
Future Plans

• Further work on Bucked Coils
• Currently running Simulation of a realistic Neutrino Factory beam. Compare results of Bucked Coils to FS2A
• Try to find a lattice with lower Bz at RF’s than Bucked Coils that gives good transmission
• Work on different lattice: Insert wedge absorbers and dipoles in FS2A or Bucked Coils configuration → Study 6D cooling

Androula Alekou, Front End Meeting