INCL4.5-Abla07: What's new for the assessment of spallation target activation?

Jean-Christophe David

(CEA-Saclay/Irfu/SPhN - France)
INCL4.5 and Abla07

<table>
<thead>
<tr>
<th>INCL4</th>
<th>Abla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Nuclear Cascade Liège (CEA and U-Liège)</td>
<td></td>
</tr>
<tr>
<td>Deexcitation (GSI)</td>
<td></td>
</tr>
<tr>
<td>Break-up; evaporation; fission (~150 MeV → 3 GeV)</td>
<td></td>
</tr>
</tbody>
</table>

Emitted particles

<table>
<thead>
<tr>
<th>INCL4.2</th>
<th>Abla</th>
</tr>
</thead>
<tbody>
<tr>
<td>n, p, (\pi)</td>
<td></td>
</tr>
<tr>
<td>n, p, (\alpha)</td>
<td></td>
</tr>
</tbody>
</table>
INCL4.5 and Abla07

<table>
<thead>
<tr>
<th>INCL4 Abla</th>
<th>Intra-Nuclear Cascade Liège (CEA and U-Liège)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deexcitation (GSI)</td>
</tr>
<tr>
<td></td>
<td>Break-up; evaporation; fission</td>
</tr>
</tbody>
</table>

Emitted particles

<table>
<thead>
<tr>
<th>INCL4.2 Abla</th>
<th>n, p, π</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCL4.5 Abla07</td>
<td>n, p, d, t, 3He, α and $A \leq 8$</td>
</tr>
<tr>
<td></td>
<td>n, p, d, t, 3He, α and IMF</td>
</tr>
</tbody>
</table>
INCL4.5 and Abla07

INCL4
Abla
Intra-Nuclear Cascade Liège (CEA and U-Liège)
Deexcitation (GSI)
Break-up; evaporation; fission

Emitted particles

<table>
<thead>
<tr>
<th>Model</th>
<th>Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCL4.2</td>
<td>n, p, π</td>
</tr>
<tr>
<td>Abla</td>
<td>n, p, α</td>
</tr>
<tr>
<td>INCL4.5</td>
<td>n, p, π, d, t, 3He, α and $A \leq 8$</td>
</tr>
<tr>
<td>Abla07</td>
<td>n, p, d, t, 3He, α and IMF</td>
</tr>
</tbody>
</table>
MegaPie

- Demonstrator for liquid Pb-Bi target
- Within SINQ (PSI)
- Operated in 2006
- Proton beam
- 575 MeV and 1.4 mA (~0.8 MW)
MegaPie

- Demonstrator for liquid Pb-Bi target
- Within SINQ (PSI)
- operated in 2006
- Proton beam
- 575 MeV and 1.4 mA (~0.8 MW)
MegaPie

- Demonstrator for liquid Pb-Bi target
- Within SINQ (PSI)
- Operated in 2006
- Proton beam
- 575 MeV and 1.4 mA (~0.8 MW)
Main differences:
- Tritium contribution
- CEM03 higher
Main differences:

- Tritium contribution
- CEM03 higher

Main contributors

Incl4.5-Abla07
Bert-Dres
Cem03
Activity LBE

Possible explanation ➔ Elementary data

Main contributors

Activity in LBE

- **Possible explanation**
- **Elementary data**

INCL4.5-Abla07: What’s new for the assessment of spallation target activation?

J.-C. David
Possible explanation

Ex. ^{203}Pb contribution

$p^{+}^{208}\text{Pb} @500\text{MeV}$

$\text{INCL4.5-Abla07} \approx \text{CEM03}$

But…

@~500MeV

$^{203}\text{Pb} = 80\% \ 203\text{Pb}$

$20\% \ 203\text{Bi}$

@~70MeV

$203\text{Pb} = 50\% \ 203\text{Pb}$

$50\% \ 203\text{Bi}$

… same story with ^{202}Pb

INCL4.5-Abla07: What's new for the assessment of spallation target activation?
Main differences:
- Tritium contribution
- CEM03 higher

INCL4.5-Abla07 better than the other codes in the MegaPie energy range
Delayed Neutrons in LBE

Neutrons:
- prompt (reaction)
- delayed (decay of precursors)

Liquid metal target → Precursors can move →

Measurement of DN @ MegaPie in 2006

Attempt to calculate DN with INCL4.5-Abla07

D. Ridikas et al., Proc. of PHYSOR2006, Vancouver, Canada
Delayed Neutrons in LBE

DN flux (a) and contributors (a_i)

$$a(x) = \sum_{i=1}^{n} a_i(x) = \sum_{i=1}^{n} a_i \frac{1 - \exp(-\lambda_i \tau_a)}{1 - \exp(-\lambda_i T)} \exp(-\lambda_i \tau_d(x))$$

- τ_a: activation time
- T: (total) circulation time
- τ_d: transit (decay) time
- i^{th} precursor #i

Fit of DN measurement with 3 precursors

<table>
<thead>
<tr>
<th>Group</th>
<th>Precursor</th>
<th>Half-life (s)</th>
<th>a_i, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87Br</td>
<td>55.6</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>88Br</td>
<td>16.3</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>17N</td>
<td>4.16</td>
<td>92.4</td>
</tr>
</tbody>
</table>

...17N is produced now in INCL4.5-Abla07...
Delayed Neutrons in LBE

\[a(x) = \sum_{i=1}^{n} a_i(x) = \sum_{i=1}^{n} a_i \frac{1 - \exp(-\lambda_i T)}{1 - \exp(-\lambda_i \tau_a)} \exp(-\lambda_i \tau_d(x)) \]

<table>
<thead>
<tr>
<th>(a_i) Ratios</th>
<th>INCL4.5-Abla07</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{17}\text{N}/^{87}\text{Br})</td>
<td>2.26</td>
<td>21.49</td>
</tr>
<tr>
<td>(^{17}\text{N}/^{88}\text{Br})</td>
<td>4.06</td>
<td>28.00</td>
</tr>
<tr>
<td>(^{87}\text{Br}/^{88}\text{Br})</td>
<td>1.80</td>
<td>1.30</td>
</tr>
</tbody>
</table>

@ 1 GeV

<table>
<thead>
<tr>
<th></th>
<th>(^{17}\text{N}) (mb)</th>
<th>(^{88}\text{Br}) (mb)</th>
<th>(^{87}\text{Br}) (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatchina exp.</td>
<td>493 ± 17</td>
<td>40 ± 12</td>
<td>30 ± 11</td>
</tr>
<tr>
<td>INCL4.5-Abla07</td>
<td>233 ± 10</td>
<td>82 ± 6</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>Phits</td>
<td>249 ± 17</td>
<td>52 ± 8</td>
<td>8 ± 3</td>
</tr>
</tbody>
</table>

\(^{17}\text{N}, ^{87}\text{Br}, ^{88}\text{Br}\): difficult to estimate

- \(^{87}\text{Br}, ^{88}\text{Br}\): very rich neutron Br isotopes
- \(^{17}\text{N}\): 2 mechanisms
Delayed Neutrons in LBE

\[
a(x) = \sum_{i=1}^{n} a_i(x) = \sum_{i=1}^{n} a_i \frac{1 - \exp(-\lambda_i \tau_a)}{1 - \exp(-\lambda_i T)} \exp(-\lambda_i \tau_d(x))
\]

<table>
<thead>
<tr>
<th>(a_i) Ratios</th>
<th>INCL4.5-Abla07</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{17}\text{N}/^{87}\text{Br})</td>
<td>2.26</td>
<td>21.49</td>
</tr>
<tr>
<td>(^{17}\text{N}/^{88}\text{Br})</td>
<td>4.06</td>
<td>28.00</td>
</tr>
<tr>
<td>(^{87}\text{Br}/^{88}\text{Br})</td>
<td>1.80</td>
<td>1.30</td>
</tr>
</tbody>
</table>

INCL4.5-Abla07 has to improved N/Br ratios…
But able to calculate them!

\(^{17}\text{N}, \(^{87}\text{Br}, \(^{88}\text{Br}: difficult to estimate

- \(^{87}\text{Br}, \(^{88}\text{Br}: very rich neutron Br isotopes
- \(^{17}\text{N}: 2 mechanisms

@ 1 GeV

<table>
<thead>
<tr>
<th></th>
<th>(^{17}\text{N}) (mb)</th>
<th>(^{88}\text{Br}) (mb)</th>
<th>(^{87}\text{Br}) (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatchina exp.</td>
<td>493 ± 17</td>
<td>40 ± 12</td>
<td>30 ± 11</td>
</tr>
<tr>
<td>INCL4.5-Abla07</td>
<td>233 ± 10</td>
<td>82 ± 6</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>Phits</td>
<td>249 ± 17</td>
<td>52 ± 8</td>
<td>8 ± 3</td>
</tr>
</tbody>
</table>
Activity Window

- ~no difference…
- except Tritium!?
Tritium in Window

Tritium is directly produced and with the right rate

575 MeV

Tritium production

Tritium production cross-section (mb)

Incident energy (MeV)

Bogatin
Mekhodiev
Currie
Fremnan
Ayvat
HINDAS
Herbach
Berlin-Dresden
OSM03
INCL4.5-ABLA07
Cascade coalescence
Evaporation

INCL4.5-Abla07: What's new for the assessment of spallation target activation?

J.-C. David
Tritium in Window

BUT comes also from low energy neutrons:
- ^3He 29.7%
- ^6Li 1.6%

Tritium is directly produced and with the right rate.

Tritium production

575 MeV
Tritium in Window

Tritium is directly produced and with the right rate

production rate = #Target * σ * Flux_projectile

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>3He</th>
<th>6Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>target density (N/barn.cm)</td>
<td>8×10^2</td>
<td>1.3×10^{-7}</td>
<td>1.7×10^{-8}</td>
</tr>
<tr>
<td>σ (barn)</td>
<td>80×10^{-3}</td>
<td>850</td>
<td>150</td>
</tr>
<tr>
<td>flux (particle/proton/cm²)</td>
<td>2×10^{-3}</td>
<td>3×10^{-2}</td>
<td>3×10^{-2}</td>
</tr>
</tbody>
</table>

By hand:
- 3He 20.5%
- 6Li 0.4%

BUT comes also from low energy neutrons:
- 3He 29.7%
- 6Li 1.6%

575 MeV
Tritium in Window

Tritium is directly produced and with the right rate

\[
\text{production rate} = \#\text{Target} \times \sigma \times \text{Flux}_{\text{projectile}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>(^3\text{He})</th>
<th>(^6\text{Li})</th>
</tr>
</thead>
<tbody>
<tr>
<td>target density (N/barn.cm)</td>
<td>(8 \times 10^2)</td>
<td>(1.3 \times 10^{-7})</td>
<td>(1.7 \times 10^{-8})</td>
</tr>
<tr>
<td>(\sigma) (barn)</td>
<td>(80 \times 10^{-3})</td>
<td>(850)</td>
<td>(150)</td>
</tr>
<tr>
<td>flux (particle/proton/cm²)</td>
<td>(2 \times 10^{-3})</td>
<td>(3 \times 10^{-2})</td>
<td>(3 \times 10^{-2})</td>
</tr>
</tbody>
</table>

BUT comes also from low energy neutrons:
- \(^3\text{He}\) 29.7%
- \(^6\text{Li}\) 1.6%

In a significant low energy neutron flux, take care of \(^3\text{He}\) production for tritium estimate!!!

By hand:
- \(^3\text{He}\) 20.5%
- \(^6\text{Li}\) 0.4%
He also produced and with the right rate. Production rate = \#Target * \sigma * Flux_{projectile}

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>(^3\text{He})</th>
<th>(^6\text{Li})</th>
</tr>
</thead>
<tbody>
<tr>
<td>target density (N/barn.cm)</td>
<td>(8 \times 10^2)</td>
<td>(1.3 \times 10^{-7})</td>
<td>(1.7 \times 10^{-8})</td>
</tr>
<tr>
<td>(\sigma) (barn)</td>
<td>(80 \times 10^{-3})</td>
<td>850</td>
<td>150</td>
</tr>
<tr>
<td>flux (particle/proton/cm²)</td>
<td>(2 \times 10^{-3})</td>
<td>(3 \times 10^{-2})</td>
<td>(3 \times 10^{-2})</td>
</tr>
</tbody>
</table>

By hand:
- \(^3\text{He}\) 20.5%
- \(^6\text{Li}\) 0.4%
Release of volatiles in Pb/Bi has been studied at ISOLDE (Ep = 1.4 GeV) … and \(^{210}\text{At} \) were measured (Y. Tall et al., ND2007)

\(^{210}\text{At} \) is produced with low rates, but:

- \(^{210}\text{At} \) decays to Po (\(\alpha\) emitter)
- \(^{210}\text{At} \) more volatile than Po

\(\rightarrow\) \(^{210}\text{At} \) can become a safety issue

No model was able to reproduce \(^{210}\text{At} \) production
INCL4.5-Abla07 seems not really better (shape!)… ??? Why?

- Model?
- Data? ……→ data=measurement / calculation=in-target !!!
Two production channels:

- Bi (p,π^-) for light isotopes
- secondary reactions induced by He for heavy isotopes
- wrong shape of calculation!
Two production channels:
- Bi (p,π⁻) for light isotopes
- secondary reactions induced by He for heavy isotopes
→ wrong shape of calculation!

Only pion channel

$\text{p (480 MeV)} + \text{Bi}$

factor 2 (not 50!)

- π spectra: OK!
- At production (π channel only) not so bad
Two production channels:
- Bi \((p,\pi^-)\) for light isotopes
- secondary reactions induced by He for heavy isotopes

- wrong shape of calculation!

- production of He OK
- wrong production of At

- Exact reaction Q-values not taken into account
- Coulomb deviation not done in He induced reactions
Astatine @ ISOLDE

Improvement?

\[^{209}\text{Bi}(\alpha,n)^{212}\text{At} \text{ (independent)} \]

\[^{212}\text{At} \]

\text{INCL4.5}

\text{YES}

\[^{212}\text{At} \]

\text{INCL4.6}

\text{YES}
Astatine @ ISOLDE

Improvement!

^{209}At

INCL4.6

^{210}At

INCL4.6

^{211}At

INCL4.6

INCL4.5-Abla07: What's new for the assessment of spallation target activation?

J.-C. David
Next steps

- Improvements into MCNP(X) → new ISOLDE calculation
- Status on the data: 211At
Conclusion

We have seen that:

• Need of **Elementary Data** to understand *macroscopic results* **AND** taking into account all mechanisms
 - ^{203}Bi production for ^{203}Pb production (and at lower energies)
 - ^{3}He(${^6}\text{Li}$) production for Tritium production

• **Delayed Neutrons** tricky to estimates due to
 - Combination of several mechanisms (evaporation/fission/break up)
 - Low probability channels

• “**Extented low energy**” spallation needed
 - Astatine (potential safety issue) from Helium $\sim 40\text{MeV} (<< 150 \text{ MeV})$

INCL4.5 and Abla07 (try to) become comprehensive codes with very encouraging results
INCL4.5-Abla07:
What's new for the assessment of spallation target activation?

Authors

A. Boudard (CEA), J. Cugnon (Univ. Liège),
J.-C. David (CEA), S. Leray (CEA),
D. Mancusi (Univ. Liège), S. Panebianco (CEA)