Ion-irradiation induced degradation of thermo-mechanical properties of carbon-based materials

M. Tomut, C. Hubert, P. Bolz, K. Kupka, C. Trautmann

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Summary

- Materials irradiation facility at GSI
- Irradiation experiments: online and post-irradiation evaluation
- Radiation-induced thermal diffusivity degradation in graphite
- Nanoindentation investigation of mechanical properties of irradiate carbon materials
- Fatigue tests using nanoindentation
- First online creep tests on ion-irradiated carbon materials
Materials irradiation facilities at GSI
Beamlines for material research irradiation at GSI

UNILAC
- Ion Sources
- M-Branch
- 100 m

SIS
- SIS 18 beam dump
- E up to 1 GeV/u
- Range: cm

Cave A
- E 100-300 MeV/u
- Range: mm-cm
- Beam spot: 4 mm² to 25 mm² with scanning

UNILAC beamlines
- E: 3.6-11.4 MeV/u
- Range: 40-120 µm
- Beam spot area: 10x10 mm to 50x50 mm

Ion Sources
- p, Ar, Au, Pb, U
UNILAC: beam parameters

Typical Energies

<table>
<thead>
<tr>
<th>Energy (MeV/u)</th>
<th>3.6</th>
<th>4.8</th>
<th>5.6</th>
<th>8.6</th>
<th>11.4</th>
</tr>
</thead>
</table>

50 Hz Mode (Penning, ECR)
- **50 Hz**
- **5 ms** length of macropulse

High-current Mode (MEVVA source)
- **1-2 Hz**
- **100-200 µs** length of macropulse

Waveform Diagrams
- **50 Hz Mode**
 - 5 ms
 - 15 ms

- **High-current Mode**
 - 100 µs
 - 1 s
Thermal camera monitoring of sample temperature

High duty cycle

Low duty cycle
M-branch irradiation facility at GSI

In situ experiments

- energies close to Bragg peak:
 - to maximize energy deposition and damage
 - to avoid activation
- online and in situ monitoring: video camera, fast IR camera, SEM, XRD, IR spectroscopy

\[\text{dE/dx} \sim Z_{\text{eff}}^2 (\text{ion}) \cdot Z(\text{target}) \]

SRIM code

ion species ..C...Xe...U

flux: up to \(10^{10}\) ions/cm\(^2\) s
Irradiation experiments at M3-branch, UNILAC, GSI

- ^{238}U, 1.14 GeV, 0.5 ms, 0.6 Hz, 4×10^9 ions/cm2 s
- ^{208}Bi, 1 GeV, 0.5 ms, 3.4 Hz, 1.2×10^9 ions/cm2 s
- ^{197}Au, 945 MeV, 2 ms, 40 Hz, 4×10^9 ions/cm2 s
Irradiation experiments
- online
- post-irradiation evaluation
Thermal properties degradation - postirradiation evaluation

fluences: $1 \times 10^{11}, 1 \times 10^{12}, 1 \times 10^{13}, 5 \times 10^{13}/1 \times 10^{14}$ i/cm2 at fluxes $\sim 5 \times 10^9$ i/cm2s

Samples for LFA: Isotropic graphite and flexible graphite
 - classical transmission measuring geometry
 - in-plane measuring geometry
Ion-induced thermal diffusivity degradation of graphite

Comparison U vs Xe irradiation
graphite vs flexible graphite

Flexible graphite

Isotropic graphite

U, 4.8 MeV/u
Xe, 8.6 MeV/u

M. Tomut, GSI
Online monitoring of thermal properties degradation

fluences: significant increase of experimental points number due to online capabilities i/cm²
at fluxes \(\sim 5 \times 10^9 \) i/cm²s

• Thermal conductivity degradation monitoring (on-line using thermal camera: estimation of time constant at cooling)
 • Cu-CD, Mo-Gr: 2 orientations, CFC: 2 orientations (U, Bi)

M. Tomut, GSI
Thermal camera monitoring of sample temperature during cooling

Temporal evolution of maximum temperature in irradiated samples

Cooling time at the beginning of irradiation

Cooling time at a dose of 1×10^{13} ions/cm2
Post-irradiation tests

- Samples for off-line tests: U, Bi, Au, Xe
- Isotropic graphite, low density graphites: foams and flexible graphite grades, CFC: 2 orientations

Microstructural characterization:
- Raman spectroscopy,
- SEM

Mechanical properties:
- Nanoindentation,

Electrical properties:
- 4-point probe resistivity measurements
Mechanical properties degradation-nanoindentation

investigations of hardening and E modulus change of irradiated layers

high temperature

Impact: fatigue damping

Courtesy LOT Quantum Design

M.Tomut, GSI
Mechanical behaviour of irradiated isotropic graphite

Evolution with accumulated dose:
- Hardness
- Young modulus

isotropic graphite, 197Au, 4.8 MeV/u

<table>
<thead>
<tr>
<th>Hardness /GPa</th>
<th>Fluence /ions/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0×10^3</td>
</tr>
<tr>
<td>0.5</td>
<td>2.0×10^3</td>
</tr>
<tr>
<td>1.0</td>
<td>4.0×10^3</td>
</tr>
<tr>
<td>1.5</td>
<td>6.0×10^3</td>
</tr>
<tr>
<td>2.0</td>
<td>8.0×10^3</td>
</tr>
<tr>
<td>2.5</td>
<td>1.0×10^4</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0×10^4</td>
</tr>
<tr>
<td>3.5</td>
<td>4.0×10^4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Young modulus /GPa</th>
<th>Fluence /ions/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0×10^3</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0×10^3</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0×10^3</td>
</tr>
<tr>
<td>15.0</td>
<td>6.0×10^3</td>
</tr>
<tr>
<td>20.0</td>
<td>8.0×10^3</td>
</tr>
<tr>
<td>25.0</td>
<td>1.0×10^4</td>
</tr>
<tr>
<td>30.0</td>
<td>2.0×10^4</td>
</tr>
</tbody>
</table>

M. Tomut, GSI
Mechanical behaviour of irradiated CFC

Evolution with accumulated dose:

Hardness

- **Transversal U**
- **In plane U**
- **In plane Au**
- **Transversal Au**

Red. modulus /GPa

- **Transversal U**
- **In plane U**
- **In plane Au**
- **Transversal Au**
Radiation induced creep measurements on flexible graphite

Au, 4.8 MeV/u

no weight

weight on
Impact nanoindentation study of fatigue behaviour of irradiated isotropic graphite

Cube Corner:
- 5 mN load,
- 28 µm acceleration distance
Failure of graphite exposed to pulsed 238U beam

Experiment

- 5×10^{14} i/cm2
- 10^{14} i/cm2
- 10^{13} i/cm2
- 5×10^{12} i/cm2

```markdown
radiation damage $\Rightarrow$ swelling
stress waves $\Rightarrow$ compression
stress concentrators + fatigue $\Rightarrow$ crack
```

FEM simulations

<table>
<thead>
<tr>
<th>Graphite target / Pulse structure</th>
<th>Maximum compressive stress (MPa)</th>
<th>Maximum tensile stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 µm (single pulse)</td>
<td>-53.3</td>
<td>0.5</td>
</tr>
<tr>
<td>45 µm (double pulse)</td>
<td>-56.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

238U, 1.14 GeV

1.5 $\times 10^{10}$ i/pulse

150 µs, 1 Hz
Conclusions and Outlook

- Ion irradiation induces:
 - early degradation of thermal diffusivity
 - hardening and increase in E modulus
 - fatigue resistance decrease
 - Creep!

dependent on dE/dX

Failure