FRONTEND OPTIMIZATION STUDIES

HISHAM KAMAL SAYED

BROOKHAVEN NATIONAL LABORATORY

May 6, 2014
FRONT END OPTIMIZATION

OUTLINE

Goal: Optimize number of useful muons and limit the proton beam power energy transmitted to the first RF cavity in the buncher.

Involved systems:
- Carbon target and carbon dump geometry
- Capture field
- Chicane design
- Be absorber

1. Target geometry parameters: Carbon target length, radius, and tilt angle to solenoid axis
2. Target Capture field: constant field length - taper length - end field
3. Chicane parameters: Length - curvature – focusing field
4. Be absorber thickness and location
5. Energy deposition in the target area + Chicane will be evaluated and involved in the optimization.
Target geometry parameters:
- Carbon target length -- radius -- tilt angle to solenoid axis

Objective: optimize at \(z = 50 \) m
- \(\Sigma \pi+\mu+\kappa \) within
 - \(0 < p_z < 450 \) MeV/c (to compensate for the Be absorber effect) & \(0 < p_t < 150 \) MeV/c

Initial lattice in G4Beamline – using GEANT4 physics list QGSP (Benchmarked with HARP data – Bungau et al PRSTAB 2014)
- \(B_z = 20T - 2.0T \) over taper length = 6.0 m
- Initial protons K.E. = 6.75 GeV
- Target radius fixed at 4 times the proton beam size

The whole optimization process 6 hours on 192 cores at NERSC
Optimal working point 2-3 mm
Different colors → different target lengths & angles

Optimal working point 70-120 cm
Different colors → different target angles & radii
CARBON TARGET GEOMETRY OPTIMIZATION

Optimal working point 1-3 degrees
Different colors \rightarrow different target lengths & radii

<table>
<thead>
<tr>
<th>Beam radius [mm]</th>
<th>Target angle [degree]</th>
<th>Target length [mm]</th>
<th>N_μ/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85292</td>
<td>1.34088</td>
<td>785.00294</td>
<td>0.39745</td>
</tr>
<tr>
<td>2.59974</td>
<td>1.64588</td>
<td>801.56101</td>
<td>0.39305</td>
</tr>
<tr>
<td>3.08659</td>
<td>2.45955</td>
<td>801.56101</td>
<td>0.39184</td>
</tr>
<tr>
<td>2.71093</td>
<td>2.24632</td>
<td>1049.69876</td>
<td>0.39097</td>
</tr>
<tr>
<td>3.08659</td>
<td>2.45955</td>
<td>906.74622</td>
<td>0.38844</td>
</tr>
</tbody>
</table>
CARBON TARGET GEOMETRY OPTIMIZATION

- To do list
 - Add carbon beam dump
 - Integrate to the chicane (see next slide)
 - Consider the capture filed in the optimization

- The whole optimization process 6 hours on 192 cores at NERSC
- Short taper (6 m) integrated with the new chicane from Pavel's G4BL lattice (same parameters as in ICOOL)
- Started optimizing the chicane parameters (initial values - D. Neuffer's icool lattice)
 - Chicane length L (initial value $L = 6.0$)
 - Chicane radius of curvature h (initial value $= 0.05818$ 1/m)
 - Be absorber length (initial value $= 100.0$ mm)
 - On-axis field is a free parameter – optimization will be carried for $B = 2.0 – 2.5 – 3.0$ T
 - Chicane aperture 40 cm (might be a free parameter as well)

- Objectives → minimize total KE of transmitted protons $\sum KE_{\text{protons}}$
 → Maximize number of transmitted muons $\sum \pi + \mu + \kappa$ within $0 < p_z < 450$ MeV/c (to compensate for the Be absorber effect) & $0 < p_t < 150$ MeV/c

Run 100 K particles through the chicane with initial parameters $\sum KE_{\text{protons}} = 29$ GeV & $\sum N_{\text{mu}} = 4377$
Run 500 K particles through the chicane with automated optimization algorithm

\[B_0 = 2.0 \, T \]

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>Be thickness [mm]</th>
<th>(\Sigma K_{e^+} \text{protons}) [GeV]</th>
<th>(\Sigma N_{\mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.057587951</td>
<td>10.23983</td>
<td>101.88068</td>
<td>0.547549</td>
<td>13522</td>
</tr>
<tr>
<td>0.057587951</td>
<td>10.23983</td>
<td>101.88068</td>
<td>0.547549</td>
<td>13506</td>
</tr>
<tr>
<td>0.057587951</td>
<td>10.23983</td>
<td>101.88068</td>
<td>0.547549</td>
<td>13506</td>
</tr>
<tr>
<td>0.057587951</td>
<td>10.23983</td>
<td>101.88068</td>
<td>0.547549</td>
<td>13506</td>
</tr>
<tr>
<td>0.04063443</td>
<td>10.99894</td>
<td>259.19359</td>
<td>0.380618</td>
<td>11975</td>
</tr>
</tbody>
</table>
Chicane

\(B_0 = 2.5 \text{ T} \)

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>Be thickness [mm]</th>
<th>(\Sigma K_{e\text{protons}}) [GeV]</th>
<th>(\Sigma N_{\mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020371496</td>
<td>21.82107</td>
<td>327.90203</td>
<td>0.741961</td>
<td>13143</td>
</tr>
<tr>
<td>0.058173286</td>
<td>9.66614</td>
<td>249.48609</td>
<td>0.230776</td>
<td>12303</td>
</tr>
<tr>
<td>0.020371496</td>
<td>23.3482</td>
<td>353.23063</td>
<td>0.0487631</td>
<td>12018</td>
</tr>
<tr>
<td>0.083906168</td>
<td>8.56258</td>
<td>101.88068</td>
<td>0.625911</td>
<td>12439</td>
</tr>
<tr>
<td>0.083906168</td>
<td>8.56258</td>
<td>101.88068</td>
<td>0.625911</td>
<td>12439</td>
</tr>
</tbody>
</table>

\(B_0 = 3.0 \text{ T} \)

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>Be thickness [mm]</th>
<th>(\Sigma K_{e\text{protons}}) [GeV]</th>
<th>(\Sigma N_{\mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.063239202</td>
<td>12.35924</td>
<td>101.88068</td>
<td>0.856025</td>
<td>17690</td>
</tr>
<tr>
<td>0.059079316</td>
<td>15.31618</td>
<td>121.18716</td>
<td>0.04844</td>
<td>15307</td>
</tr>
</tbody>
</table>
CONCLUSION & SUMMARY

- New objective for front end optimization
 - Handle excessive proton beam + unwanted secondaries
 - Capture as much muons

- Energy deposition has to be integrated in the optimization study
 - Partitioning of energy deposited in
 - Beam dump
 - Chicane
 - Be absorber

- Optimization includes
 - Target geometry
 - Beam dump
 - Chicane field + chicane geometry
 - Be absorber
 - Re-tune buncher & phase rotation