The Project-X Research Program

Neutrino oscillation experiments
A high-power proton source with proton energies between 8 and 120 GeV would produce intense neutrino beams directed toward near detectors on the Fermilab site and massive detectors at distant underground laboratories.

Kaon, muon, nuclei & neutron precision experiments
These could include world leading experiments searching for muon-to-electron conversion, nuclear and neutron electron dipole moments (edms), precision measurement of neutron properties and world-leading precision measurements of ultra-rare kaon decays.

Platform for evolution to a Neutrino Factory and Muon Collider
Neutrino Factory and Muon-Collider concepts depend critically on developing high intensity proton source technologies.

Nuclear Energy Applications
Accelerator, spallation, target and transmutation technology demonstration which could investigate and develop accelerator technologies important to the design of future nuclear waste transmutation systems and future thorium fuel-cycle power systems.

Detailed Discussion: Project X website
Project-X Accelerator
Functional Requirements

CW Linac
- Particle Type: H^-
- Beam Kinetic Energy: 3.0 GeV
- Average Beam Current: 1 mA
- Linac pulse rate: CW
- Beam Power: 3000 kW
- Beam Power to 3 GeV program: 2870 kW

RCS/Pulsed Linac
- Particle Type: protons/H^-
- Beam Kinetic Energy: 8.0 GeV
- Pulse rate: 10 Hz
- Pulse Width: 0.002/4.3 msec
- Cycles to MI: 6
- Particles per cycle to Recycler: 2.6×10^{13}
- Beam Power to 8 GeV program: 190 kW

Main Injector/Recycler
- Beam Kinetic Energy (maximum): 120 GeV
- Cycle time: 1.3 sec
- Particles per cycle: 1.6×10^{14}
- Beam Power at 120 GeV: 2200 kW
Footprint of charged and neutral detectors motivated by BNL-E949, KOPIO and JPARC
Project-X High-Intensity Campus

Figure 1: Schematic illustration of the CEBAF 12 GeV Upgrade.
Beam after splitter

- 1 MHz pulses
- 10 MHz bunches
- 20 MHz bunches

Number of ions per bunch, (e7)

Time, us

Courtesy of Nagaitsev

March 2012

R. Tschirhart
Chopping and splitting for 3-GeV experiments

1 μsec period at 3 GeV
- Muon pulses (16e7) 81.25 MHz, 100 nsec at 1 MHz, 700 kW
- Kaon pulses (16e7) 20.3 MHz, 1540 kW
- Nuclear pulses (16e7) 10.15 MHz, 770 kW

Ion source and RFQ operate at 4.2 mA
75% of bunches are chopped at 2.5 MeV after RFQ

Courtesy of Nagaitsev
Siting of the E949 experiment at the BNL AGS operated at 50 kW

Target

ExB separators

Detector

Courtesy, Steve Kettell, 2011
Neutral kaon concept based on 50 kW, M. Sivertz 2005
Sweeping Magnets

Neutral kaon concept based on 50 kW, M. Sivertz 2005
Neutral Beam Collimators

K0PI0 Neutral Beam Line

Collimators

Spoiler

B-Target

Dipole Sweeper Magnets

Neutral kaon concept based on 50 kW, M. Sivertz 2005
Status of Project X Targetry & Beam-line Studies

• Neutrinos: Synergy with LBNE effort.

• Muons: Studies underway on 1 MW carbon targets, Mu2e & (g-2) development, engaging Muons Inc.

• Kaons: Initiating now, ORKA development.

• Spallation targets for particle physics. Initiating a study of ISOL and UCN yields and pre-conceptual designs starting March 2012.
Goals for Discussion Today

• Plan to identify and electronically capture the engineering drawings and knowledge base for the realized BNL E949 charged kaon target and separated kaon beamline.

• Plan to identify and electronically capture the engineering drawings and knowledge base for the proposed but not realized KOPIO neutral kaon target and beamline systems.

• Plan to estimate energy deposit profile and yields for 3 GeV proton beam on the targets listed in Appendix 1. (Mokhov group)

• Plan to develop a mechanical and power management concepts for the target materials and geometries considered in Appendix 1. Separate design concepts for charged and neutral targets.

High power targetry expertise (McDonald, Kirk, Pendzick, Pearson, Pile) will provide some course correction and feedback to Anatoli and the Project X team.
Appendix A
MARS effort for the following target simulations:

• What we want:

• 99% interaction fraction of 1000 kW on a 1mmx1mmx1mm source for perfect optics.

Back to reality....What is possible, What we will we study??

• 10 cm of carbon, 5mm x 5mm, shooting center with 1mm beam sigma.

• 20 cm of carbon, 5mm x 5mm, shooting center with 1 mm beam sigma.

• 10 cm of Ga, 10 cm (waterfall) wide 5 mm thick, shoot through center, 1 mm sigma.

• 10 cm of Hg, 10 cm (waterfall) wide 5 mm thick, shoot through center, 1 mm sigma.

• 10 cm of Ni, 10 cm wide (spinning disk) 5mm thick, shoot center, 1 mm sigma.

•

March 2012 R. Tschirhart
Project X Day-1 program goals: Definitive Measurement of $K \rightarrow \pi \nu \bar{\nu}$

In the Project-X era the Fermilab ORKA experiment would precisely measure the rate and form-factor of $K^+ \rightarrow \pi \nu \bar{\nu}$. The Project-X era presents an opportunity to measure the holy grail of kaon physics with precision: $K_L \rightarrow \pi \nu \bar{\nu}$.
Outside the US: The JPARC Play Book

Hadron Hall
Experimental Programs

J/ψ implantation?

K meson
Implantation of Kaon and the nuclear shrinkage

Why are bound quarks heavier?
Mass without Mass Puzzle
An Incomplete Menu of World Class Research Targets Enabled by Project-X

Kaon Physics:

- $K^+ \rightarrow \pi^+\nu\bar{\nu}$: >1000 events, Precision rate and form factor.
- $K_L \rightarrow \pi^0\nu\bar{\nu}$: 1000 events, enabled by high flux & precision TOF.
- $K^+ \rightarrow \pi^0\mu^+\nu$: Measurement of T-violating muon polarization.
- $K^+ \rightarrow (\pi,\mu)^+\nu_X$: Search for anomalous heavy neutrinos.
- $K^0 \rightarrow \pi^0e^+e^-$: <10% measurement of CP violating amplitude.
- $K^0 \rightarrow \pi^0\mu^+\mu^-$: <10% measurement of CP violating amplitude.
- $K^0 \rightarrow X$: Precision study of a pure K^0 interferometer: Reaching out to the Plank scale ($\Delta m_K/m_K \sim 1/m_P$)
- $K^0, K^+ \rightarrow$ LFV: Next generation Lepton Flavor Violation experiments

...and more
Figure 2: The estimated (LAQGSM/MARS15) kaon yield at constant beam power (yield/T_p) for experimentally optimal angular and energy regions as a function of T_p (GeV).
Validating Simulation Tools...

• Los Alamos + MARS simulation suite (LAQGSM + MARS15) is now a state of the art tool set to simulate the challenging region between 1-4 GeV/c proton beam momentum.

[Gudima, Mokhov, Striganov]

• Validated against the high quality data sets from COSY.

BOE Guess for Kaon Research Program (circa January 2011)

<table>
<thead>
<tr>
<th>Description</th>
<th>FY2010 costs (TPC metric)</th>
<th>Basis of Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and conventional facilities including secondary proton beam enclosure:</td>
<td>$25M</td>
<td>Conceptual facility layout (Figures 1-4) from the Project-X kaon research program white paper and assuming $1500/ft² fully burdened facility square-foot costs from NOvA (CD-2) & Mu2e (CD-1).</td>
</tr>
<tr>
<td>Beam-line from the Project-X switch-yard and kaon target (1500 kW) systems, infrastructure and dump:</td>
<td>$45M</td>
<td>Short secondary proton beam-line (150 ft) conceptual design exists, base cost estimate of $2M with 60% contingency. Pre-conceptual design for target systems and dump is based on JPARC. Target systems cost is based on beam power scaling (x2.2) of the NOvA-ANU 700 kW target systems (CD-2 reviewed) base cost estimate with 100% contingency added.</td>
</tr>
<tr>
<td>Charged kaon experiment:</td>
<td>$60M</td>
<td>BNL-E949 experience used to develop the conceptual design (60% mean contingency).</td>
</tr>
<tr>
<td>Neutral kaon experiment:</td>
<td>$80M</td>
<td>KOPIO(RSVP), NSF cost review (CD-2 equivalent) estimate with 40% contingency. Modifications and upgrades to the BNL AGS accelerator systems are removed.</td>
</tr>
<tr>
<td>Total:</td>
<td>$210M</td>
<td></td>
</tr>
</tbody>
</table>

March 2012
R. Tschirhart
Guess of total effort and effort categories need to develop a 1500kW Target System CDR appropriate for DOE CD-1

Sum of effort from CD0-CD1, assume a 3 year duration of effort:

- 1.00 FTE Accelerator Physicist Experimental
- 1.00 FTE Accelerator Physicist Theory
- 1.00 FTE Applications Development & Systems Analyst FN.X.IT.IT.AD
- 0.25 FTE Chemist
- 0.50 FTE Computational Physics Developer
- 0.25 FTE Computer Customer Support
- 0.25 FTE Computing Services Specialist
- 0.50 FTE Control System Engineer
- 2.00 FTE Design
- 1.00 FTE Electrical Design Engineer
- 1.00 FTE Electrical Designer
- 0.50 FTE Electrical Drafter
- 1.00 FTE Electrical Engineer
- 0.50 FTE Electronics Design Engineer
- 1.00 FTE Engineering Physicist
- 0.15 FTE General Administrative
- 0.50 FTE Magnet Design Engineer
- 0.50 FTE Magnet Designer
- 0.50 FTE Magnet Scientist
- 1.00 FTE Mechanical Design Engineer
- 1.00 FTE Mechanical Designer
- 1.00 FTE Mechanical Drafter
- 1.00 FTE Mechanical Engineer
- 0.50 FTE Particle Physicist Experimental
- 1.00 FTE Radiation Protection
- 0.15 FTE RF Design Engineer
- 0.15 FTE RF Scientist
- 2.00 FTE Un-costed Scientists
- 0.15 FTE Web Applications Developer

Total of 21.5 FTEs for 3 years, about 7 FTEs/year.

Sanity check is a recollection of the SNS target CDR effort (~6 FTE sustained for 2-3 years, not counting simulation and software) made by Tom McManamy (Senior ME, worked on SNS since 1996), private communication.
K$^+$ Beamline: Focus a low energy separated charged beam on a stopping target. Measure kaon decays at rest!

Optics design and performance of LESB3, a two-stage separated 800-MeV/c kaon beamline

J. Doornbosa,*, P. Pileb, F. Meotc, M. Aokia,1, E.W. Blackmorea, I-H. Changb, C.J. Kosta, K.K. Lib, J.A. Macdonalda, T. Nakanoa,2

aTRIUMF, Vancouver, B.C., V6T 2A3, Canada
bBrookhaven National Laboratory, Upton, NY 11973, USA
cDSM/DAPNIA/SEA, CEA Saclay, F-91191 Gif-sur-Yvette, Cedex, France

Received 29 September 1999; accepted 22 October 1999

Abstract

The optics design and the measured performance are described for LESB3, the 800-MeV/c kaon beamline at the Brookhaven AGS used by E787 to search for rare K$^+$ decays. The beamline provides a flux of $\sim 5 \times 10^5 K^+ / 10^{12}$ protons on target, with a K/π ratio of > 3. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Brookhaven AGS; Secondary beam; Kaon beam; Separated beam; Wien filter; Beam optics
Neutral Beam Collimaters

GEANT-based MC optimize the design of the KOPIO collimator.

Each stage of collimation points to a different vertex.

This reduces contributions to the halo due to neutrons with multiple “bounces” in the collimators. choice of material and geometry.

Pb collimators and Stainless Steel beam pipe.
W liners of thickness from 1mm to 10mm. Collimators interleaved with borated concrete to reduce neutrons.

M. Sivertz 2005
BNL E949 and Project-X kaon momentum spectra and sensitivity comparisons

x140 average rate of stopping kaons with respect to BNL E949, x11 the average stopping rate of ORKA.

![Graph showing kaon momentum spectra]

<table>
<thead>
<tr>
<th></th>
<th>Beam Energy T_p</th>
<th>Protons/second (avg) on [target (λ_I)]</th>
<th>$p(K^+)$ (MeV/c)</th>
<th>Stopping K^+/π^+ (sec)</th>
<th>K^+/π^+ Production Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL AGS (E949)</td>
<td>21 GeV</td>
<td>12×10^{12} on $0.7 \lambda_I \text{ Pt.}$</td>
<td>700-730</td>
<td>0.7×10^6 K$/\text{sec}$</td>
<td>1:24</td>
</tr>
<tr>
<td>Project-X/ K^+ expt</td>
<td>3.0 GeV</td>
<td>$1/2 \times 6000 \times 10^{12}$ on $1.0 \lambda_I \text{ C}$</td>
<td>450-570</td>
<td>98×10^6 K$/\text{sec}$</td>
<td>1:80</td>
</tr>
</tbody>
</table>

Table 1: Compares the measured rate of stopping K^+ in the BNL-E949 experiment with full LAQGSM/MARS thick-target simulations for Project-X charged kaon yield with $1/2$ of the 1 ma 3.0 GeV proton beam.
KOPIO-AGS and Project-X kaon momentum spectra and sensitivity comparison

x8 flux into KOPIO solid angle, nominal 5 year run is an aggregate x20 over KOPIO...permits a smaller beam!

<table>
<thead>
<tr>
<th>Beam Energy</th>
<th>Target (λI)</th>
<th>p(K^+) (MeV/c)</th>
<th>K_L/second (into 500 μsr)</th>
<th>K_L/n Ratio ($E_\gamma>$10 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL AGS</td>
<td>24 GeV</td>
<td>1.1 Platinum</td>
<td>300-1200</td>
<td>60×10^6 K_L/sec</td>
</tr>
<tr>
<td>Project X</td>
<td>3.0 GeV</td>
<td>1.0 Carbon</td>
<td>300-1200</td>
<td>450×10^6 K_L/sec</td>
</tr>
</tbody>
</table>

Table 2: Comparison the Project-X K_L production yield from a thick target fully simulated with LAQGSM/MAR15 into the KOPIO beam solid angle and momentum acceptance. The BNL AGS kaon and neutron yields are from RSVP reviews in 2004 (Bryman) and Jaffe (2005).
$K \rightarrow \pi \nu \bar{\nu}$... Past, Present, Future

<table>
<thead>
<tr>
<th>Facility (Experiment)</th>
<th>Proton Power</th>
<th>Kaon Decay/stop rate</th>
<th>Kaon Properties</th>
<th>$K \rightarrow \pi \nu \bar{\nu}$ Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL AGS (E787/E949):</td>
<td>50kW</td>
<td>1×10^6 K^+/sec</td>
<td>Pure stopped K^+ source</td>
<td>7 events (charged)</td>
</tr>
<tr>
<td>CERN (NA62): Fermilab: (ORKA):</td>
<td>20kW</td>
<td>10×10^6 K^+/sec</td>
<td>Un-separated 1-GHz $K^+/\pi^+/p^+$ beam Pure stopped K^+ source</td>
<td>80 events (charged) 1000 events (charged)</td>
</tr>
<tr>
<td>Project-X $K^+ \rightarrow \pi \nu \bar{\nu}$</td>
<td>1500 kW</td>
<td>100×10^6 K^+/sec</td>
<td>Pure stopped K^+ source</td>
<td>>1000 events (charged)</td>
</tr>
<tr>
<td>JPARC (KOTO):</td>
<td><300 kW</td>
<td><0.5$ \times 10^6$ K_L/sec</td>
<td>Pencil beam</td>
<td>1 event (neutral)</td>
</tr>
<tr>
<td>Project-X $K_L \rightarrow \pi \nu \bar{\nu}$</td>
<td>1500kW</td>
<td>50×10^6 K_L/sec</td>
<td>Pencil beam & Precision TOF</td>
<td>1000 events (neutral)</td>
</tr>
</tbody>
</table>