Hg System Operation Review

V.B. Graves

Muon Collaboration Friday Meeting

April 13, 2007
Outline

• Integrated testing results
• Operational experience
• Plans at CERN
Hg System Equipment

- Syringe pump
- Hydraulic power unit w/control system
- Optical diagnostic system
- Baseplate support structures
MIT Testing Result Summary

- Completed 14 runs with field (10-15-20 m/s jets, 5-10-15 Tesla fields)
- Syringe pump performed as expected, no leaks
- Expected increased Hg pressure due to field, but no effects observed
- Water vapor issues inside jet chamber resulted in addition of strip heater on exterior of chamber
- External bore heater had to be reconfigured due to clearance issues
Hg & Hydraulic Pressure Comparison - 0T vs. 15T
20m/s Hg Jets

Design Pressures:
Hg Cylinder - 100 bar
Hydraulic Cylinders - 200 bar
Nozzle Velocity Comparison - 0T vs. 15T

Syringe Command Signal

0.000 500.000 1000.000 1500.000 2000.000 2500.000 3000.000

Nozzle Velocity (cm/sec)

Syringe Command 0T Syringe Command 15T Nozzle Velocity 0T Nozzle Velocity 15T

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

MC Friday Meeting 13 Apr 2007
Addition of Strip Heaters

- Approx 0.5L water not removed from system prior to Hg operations at ORNL
- Insertion into magnet caused condensation on viewports
- Modified existing flexible heaters to prevent condensation
- New heaters and controllers procured for CERN operation
Operational Experience

- Hg fill/drain process performed twice without incident
- Small Hg leak occurred at ORNL
 - Contained within secondary, no problems in cleanup
- Control system functions as expected
 - Tested emergency stop conditions
- Hg vapor detection and capture
 - Vapor monitors work as expected
 - Local ventilation system (Scavenger) quickly removes any vapors within secondary, zero emissions detected at exhaust
Hg Fill & Drain Procedures Tested

- Two fill and drain cycles completed
 - MIT cycles observed by CERN personnel
- Peristaltic pump method works well, minimizes spill risk & vapor generation
- Drain into intermediate container reduces chance of overfilling flask
- Flasks weighed empty & full to track inventory
- No spills or operational problems
Hg Leak Experienced

- Very high vapor levels inside secondary detected at ORNL
 - No vapors detected outside secondary
 - Scavenger snorkel successfully removed vapors

- Suspected Hg cylinder bellows & made effort to seal seams
 - Upon disassembly, no vapors detected inside bellows

- Small Hg leak discovered in nozzle supply threaded joint
 - Successfully removed liquid and tightened joint
Emergency Stops Tested

- Syringe pump stopped during 20m/s jet creation
- No detrimental effects on equipment
- No noticeable vibration or shudder
Plans at CERN for Hg System

• Transport all equipment into TT2/TT2A (start Apr 23)

• Open secondary containment prior to Hg loading (start May 7)
 – Procedures in place for this operation
 – Leak check primary containment (pressure decay test without opening primary)
 – Connect optical diagnostics system & adjust viewport optics
 – Install new heater strips
 – Install umbilicals and operate optical diagnostic system

• Close secondary
 – Install other umbilicals (hydraulics, sensors, vapor monitors)
 – Load Hg

• Perform Hg system commissioning tests (start May 14)
 – System can be operated and tested independently of solenoid
Conclusions

• System operating characteristics have been quantified during ORNL and MIT testing

• 15T field induced no additional pressure on Hg piping, system well within design pressures

• Secondary containment has prevented vapor escape

• Valuable operational experience gained
 – Hg leak experienced
 • Detected with instrumentation, contained within secondary, successfully mitigated
 – Control system functionality proven