Simulation of Dynamic Interaction of the Neutrino Factory Mercury Jet with the Mercury Collection Pool/Beam Dump

N. Simos, BNL
The target system concept for a Muon Collider/Neutrino Factory incorporates a mercury jet at the target and a pool of mercury as the beam dump and catcher of the mercury jet.

The surface of the pool will be disrupted by the splash of the jet (and by the proton beam).

How can this disruption be mitigated?
Challenges:

Need Hg equation of state for both liquid and gas phases
 SESAME Library revisited in attempt to numerically describe
 the Hg phase diagram and introduce it to codes such as LS-DYNA

Energy Deposition introduction into Hg jet/pool system
 mechanics of it has been solved by utilizing capabilities of different codes

Implementation of Solenoid Tesla Field as part of same analysis
 we think we have a solution with “pseudo-angular” rotation of Hg jet providing
 magneto-confining pressure

Trusting the predictions of the violent processes that we try to simulate
 excellent basis due to successful benchmarking of relevant experiments
LS-Dyna simulation:

does any Hg remains suspended ???

Temperature

P

S
Another Challenge: Modeling of cavitation bubbles during disruption of the Hg Jet/Pool

LS-Dyna simulations:
Validation of LS-Dyna with experiments on collapse of 20-cm-diameter PMTs under water:

Predictions ahead of test ➔ within 5% !!!
Path Forward:

We feel that the simulation processes have been well benchmarked to extrapolate the analysis into the question of phase transitions.

SESAME Library (Hg) EOS described numerically (user input into LS-DYNA)

Incorporate all effects (hydrodynamic, beam, solenoid field)

Quantify the ambient space for operational mode

.............. To be continued