Physics Opportunities with Muon Beams:
Neutrino Factories and Muon Colliders

Kirk T. McDonald

Princeton U.
mcdonald@puphep.princeton.edu

Presented to the
National Science Foundation “Prospective MRE” Panel

November 29, 1999

http://puhep1.princeton.edu/~mcdonald/mumu/NSFLetter/
Past Uses of Muon Beams:

- Measurement of $g - 2$ of the muon.
- Search for “forbidden” processes: $\mu \rightarrow e\gamma$, $\mu N \rightarrow eN$, ...
- Study of nuclear structure via $\mu N \rightarrow \mu X$.

New Opportunities:

- Neutrino factories based on $\mu \rightarrow e\nu_\mu \bar{\nu}_e$.
 - Neutrino oscillations.
 - Nucleon structure via $\nu_\mu N \rightarrow \mu X$; X includes charm...
 - A path to muon colliders.
- Muon colliders.
 - s-channel production of light Higgs.
 - Precision studies of electroweak/supersymmetry physics.
 [Leptonic initial state;
 Beamstrahlung suppressed by $(m_e/m_\mu)^2$.]
 - A new path to the energy frontier.
Oscillations of Massive Neutrinos

Neutrinos could have a small mass (Pauli, Fermi, Majorana, 1930’s).

Massive neutrinos can mix (Pontecorvo, 1957).

In the example of only two massive neutrinos, with mass eigenstates ν_1 and ν_2 with mass difference Δm and mixing angle θ, the flavor eigenstates ν_a and ν_b are related by

$$
\begin{pmatrix}
\nu_a \\
\nu_b
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}.
$$

The probability that a neutrino of flavor ν_a and energy E appears as flavor ν_b after traversing distance L in vacuum is

$$
P(\nu_a \rightarrow \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [eV^2]}{E [GeV]} \frac{L [km]}{E [GeV]} \right).
$$

The probability that ν_a does not disappear is

$$
P(\nu_a \rightarrow \nu_a) = \cos^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [eV^2]}{E [GeV]} \frac{L [km]}{E [GeV]} \right).
$$
A Sketch of Current Data

• The “anomaly” of atmospheric neutrinos suggests that GeV ν_μ’s disappear while traversing the Earth’s diameter.
 $\Rightarrow \Delta m^2 \approx 10^{-3} \text{ (eV)}^2$ for $\sin^2 2\theta \approx 1$.
 (Kamiokande, IMB, Soudan-2, MACRO, Super-Kamiokande)

• The solar neutrino “deficit” suggests that MeV ν_e’s disappear between the center of the Sun and the Earth.
 $\Rightarrow \Delta m^2 \approx 10^{-10} \text{ (eV)}^2$ for $\sin^2 2\theta \approx 1$, if vacuum oscillations.
 (Homestake, GALLEX, SAGE)

• The LSND experiment at Los Alamos suggests that 30-MeV ν_μ’s appears as ν_e’s after 30 m.
 $\Rightarrow \Delta m^2 \approx 1 \text{ (eV)}^2$, but reactor data requires $\sin^2 2\theta \lesssim 0.03$.

The first two results require at least 3 massive neutrinos.

All results together require at least 4 massive neutrinos.

The measured width of the Z^0 boson (LEP) \Rightarrow only 3 Standard Model neutrinos. A 4th massive neutrino must be “sterile”.

The Supersymmetric Seesaw

A provocative conjecture is that neutrino mass m_ν is coupled to two other mass scales, m_I (intermediate) and m_H (heavy), according to

$$m_\nu = \frac{M_I^2}{M_H}.$$

(Gell-Mann, Ramond, Slansky, 1979)

A particularly suggestive variant takes $m_I = \langle \phi_{\text{Higgs}} \rangle = 250$ GeV; Then

$$m_\nu \approx \sqrt{\Delta m^2(\text{atmospheric})} \approx 0.06 \text{ eV} \Rightarrow m_H \approx 5 \times 10^{15} \text{ GeV}.$$

This is perhaps the best experimental evidence for a grand unification scale, such as that underlying supersymmetric SO(10) models.

Neutrino oscillations \Rightarrow Supersymmetry.
Mixing of Three Neutrinos

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\
s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix},
\]

where \(c_{12} = \cos \theta_{12}\), etc. (Maki, Nakagawa, Sakata, 1962).

Three massive neutrinos ⇒ six independent parameters:

- Three mixing angles: \(\theta_{12}, \theta_{13}, \theta_{23}\),
- A phase \(\delta\) related to CP violation,
- Two differences of the squares of the neutrino masses.

Ex: \(\Delta m_{12}^2 = \Delta m^2(\text{solar})\) and \(\Delta m_{23}^2 = \Delta m^2(\text{atmospheric})\).

Measurement of these parameters is a primary goal of experimental neutrino physics.

If four massive neutrinos, then 6 mixing angles, 3 phases, 3 independent squares of mass differences.

[Theorists find the MNS matrix more analyzable than the CKM matrix.]
Matter Effects

ν_e’s can interact with electrons via both W and Z^0 exchanges, but other neutrinos can only interact via Z^0 exchange.

$$\Rightarrow \sin^2 2\theta_{\text{matter}} = \frac{\sin^2 2\theta_{\text{vac}}}{\sin^2 2\theta_{\text{vac}} + (\cos 2\theta_{\text{vac}} - A)^2},$$

where $A = 2\sqrt{2}G_F N_e E / \Delta m^2$ depends on sign of Δm^2.

At the “resonance”, $\cos 2\theta_{\text{vac}} = A$, $\sin^2 2\theta_{\text{matter}} = 1$ even if $\sin^2 2\theta_{\text{vac}}$ is small (Wolfenstein, 1978, Mikheyev, Smirnov, 1986).

\Rightarrow 3 MSW solutions to the solar neutrino problem:
Too Many Solutions

There are 8 scenarios suggested by present data:

• Either 3 or 4 massive neutrinos.

• Four solutions to the solar neutrino problem:

 1. Vacuum oscillation (VO) solution;
 \[\Delta m_{12}^2 \approx (0.5 - 5.0) \times 10^{-10} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.7 - 1.0). \]

 2. Low (Just So) MSW solution;
 \[\Delta m_{12}^2 \approx (0.5 - 2.0) \times 10^{-7} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.9 - 1.0). \]

 3. Small mixing angle (SMA) MSW solution;
 \[\Delta m_{12}^2 \approx (4.0 - 9.0) \times 10^{-6} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.001 - 0.01). \]

 4. Large mixing angle (LMA) MSW solution;
 \[\Delta m_{12}^2 \approx (0.2 - 2.0) \times 10^{-4} \text{ eV}^2, \sin^2 \theta_{12} \approx (0.65 - 0.96). \]

• Atmospheric neutrino data ⇒ \[\Delta m_{23}^2 \approx (3 - 5) \times 10^{-4} \text{ eV}^2; \]
 \[\sin^2 \theta_{12} > 0.8. \]

• \[\theta_{13} \] very poorly known; \[\delta \] completely unknown.
The Next Generation of Neutrino Experiments

- Short baseline accelerator experiments (miniBoone, ORLAND, CERN) will likely clarify the LSND result.

- Super-Kamiokande + new long baseline accelerator experiments (K2K, Minos, CERN) will firm up measurements of θ_{23} and Δm^2_{23}, but will provide little information on θ_{13} and δ.

- New solar neutrino experiments (BOREXino, SNO, HELLAZ, HERON,) will explore different portions of the energy spectrum, and clarify possible pathlength-dependent effects. SNO should provide independent confirmation of neutrino oscillations via comparison of reactions $\nu^+\overline{2H} \rightarrow p + p + e$ and $\nu^+\overline{2H} \rightarrow p + n + \nu$.

- Each of these experiments studies oscillations of only a single pair of neutrinos.

- The continued search for the neutrinoless double-beta decay $^{78}\text{Ge} \rightarrow^{78}\text{Se} + 2e^-$ will improve the mass limits on Majorana neutrinos to perhaps as low as 0.001 eV (hep-ex/9907040).
The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.

- More neutrinos are needed!

- Present neutrino beams come from $\pi, K \rightarrow \mu\nu_\mu$ with small admixtures of ν_μ and ν_e from μ and $K \rightarrow 3\pi$ decays.

- Higher (per proton beam power), and better characterized, neutrino fluxes are obtained from μ decay.

Collect low-energy μ’s from π decay, accelerate the μ’s to the desired energy, and store in a ring while they decay via $\mu^- \rightarrow e^-\nu_\mu\bar{\nu}_e$. [Of course, can use μ^+ also.]
6 Classes of Experiments at a Neutrino Factory

\[\nu_\mu \rightarrow \nu_e \rightarrow e^- \quad \text{(appearance)}, \quad (1) \]
\[\nu_\mu \rightarrow \nu_\mu \rightarrow \mu^- \quad \text{(disappearance)}, \quad (2) \]
\[\nu_\mu \rightarrow \nu_\tau \rightarrow \tau^- \quad \text{(appearance)}, \quad (3) \]
\[\nu_e \rightarrow \nu_e \rightarrow e^+ \quad \text{(disappearance)}, \quad (4) \]
\[\nu_e \rightarrow \bar{\nu}_\mu \rightarrow \mu^+ \quad \text{(appearance)}, \quad (5) \]
\[\nu_e \rightarrow \bar{\nu}_\tau \rightarrow \tau^+ \quad \text{(appearance)}. \quad (6) \]

[Plus 6 corresponding processes for \(\bar{\nu}_\mu \) from \(\mu^+ \) decay.]

Processes (2) and (5) are easiest to detect, via the final state \(\mu \).

Process (5) is noteworthy for having a “wrong-sign” \(\mu \).

Processes (3) and (6) with a final state \(\tau \) require \(\mu \)’s of 10’s of GeV.

Processes (1) and (4) with a final state electron are difficult to detect.

Finely segmented, magnetic detectors of 10’s of kilotons will be required.
The Rates are High at a Neutrino Factory

<table>
<thead>
<tr>
<th></th>
<th>(\nu_\mu)</th>
<th>(\nu_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino Factory</td>
<td>(2 (\times) 10^{20} (\nu_\mu)/yr)</td>
<td></td>
</tr>
<tr>
<td>10 GeV</td>
<td>2200</td>
<td>1300</td>
</tr>
<tr>
<td>20 GeV</td>
<td>18,000</td>
<td>11,000</td>
</tr>
<tr>
<td>50 GeV</td>
<td>(2.9 \times 10^5)</td>
<td>(1.8 \times 10^5)</td>
</tr>
<tr>
<td>250 GeV</td>
<td>(3.6 \times 10^7)</td>
<td>(2.3 \times 10^7)</td>
</tr>
</tbody>
</table>

MINOS (WBB)

<table>
<thead>
<tr>
<th></th>
<th>(\nu_\mu)</th>
<th>(\nu_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low energy</td>
<td>460</td>
<td>1.3</td>
</tr>
<tr>
<td>Medium energy</td>
<td>1440</td>
<td>0.9</td>
</tr>
<tr>
<td>High energy</td>
<td>3200</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Even a low-energy neutrino factory has high rates of electron neutrino interactions.

A neutrino factory with \(E_\mu \gtrsim 20 \text{ GeV} \) is competitive for muon neutrino interactions.
Scaling Laws for Rates at a Neutrino Factory

\[\sigma_\nu \propto E; \quad I_\nu \propto 1/(\theta)^2 \propto (E/L)^2: \quad \text{Rate} \propto I_\nu \sigma_\nu \propto E^3/L^2. \]

⇒ Rate \(\propto E^3 \) at fixed \(L \), \quad \text{Rate} \propto 1/L^2 \) at fixed \(E \).

Neutrino oscillation probability varies with \(L/E \),

⇒ Rate \(\propto E \) for fixed \(L/E \).

\[\Delta m_{23}^2 = 3 \times 10^{-3} \text{ eV}^2 \]
\[\sin^2 2\theta_{23} = 1 \]

\(\tau \) appearance suppressed at low energy. Larger \(E \) ⇒ larger \(L \).
\[\nu_\mu \rightarrow \nu_\mu \rightarrow \mu^- \] **Disappearance**

\[E_\mu = 30 \text{ GeV}, \]
\[2 \times 10^{20} \mu \text{ decays}, \]
\[L = 7000 \text{ km}, \]
\[\sin^2 2\theta_{23} = 1. \]

(hep-ph/9906487)

\[\Delta m_{23}^2 \quad \text{Events} \]
\[\quad (\text{eV}^2) \quad (\text{per 10 kt-yr}) \]
\[0.002 \quad 2800 \]
\[0.003 \quad 1200 \]
\[0.004 \quad 900 \]
\[0.005 \quad 1700 \]
\[\text{No Osc.} \quad 6200 \]

\[\nu_\mu \rightarrow \nu_\tau \rightarrow \tau^- \] **Appearance**

\[\Delta m_{23}^2 \quad \text{Events} \]
\[\quad (\text{eV}^2) \quad (\text{per 10 kt-yr}) \]
\[0.002 \quad 1200 \]
\[0.003 \quad 1900 \]
\[0.004 \quad 2000 \]
\[0.005 \quad 1800 \]

For conditions as above.
Measuring θ_{13}

Many ways:

\[P(\nu_e \rightarrow \nu_\mu) = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \frac{1.27\Delta m_{23}^2L}{E_\nu}, \]

\[P(\nu_e \rightarrow \nu_\tau) = \sin^2 2\theta_{13} \cos^2 \theta_{23} \sin^2 \frac{1.27\Delta m_{23}^2L}{E_\nu}, \]

\[P(\nu_\mu \rightarrow \nu_\tau) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{1.27\Delta m_{23}^2L}{E_\nu}. \]

10 kton detector,
$E_\mu = 20$ GeV,
2×10^{20} μ decays,
$L = 732$ km,
$\sin^2 2\theta_{23} = 1$,
Left: $\nu_e \rightarrow \nu_\mu \rightarrow \mu^+$,
Right: $\nu_\mu \rightarrow \nu_\mu \rightarrow \mu^-$,
Box = presently allowed. (hep-ph/9811390).
Measuring the Sign of Δm_{23}^2 via Matter Effects

The matter effect resonance depends on the sign of Δm^2 (p. 7).

Large effect of Δm_{23}^2 in ν_μ (disappearance) if $\sin^2 2\theta_{13} \approx 0.1$.

For smaller $\sin^2 2\theta_{13}$, may be better to use $\nu_e \rightarrow \nu_\mu$ (appearance).
Measuring δ via CP Violation

The phase δ is accessible to terrestrial experiment in the large mixing angle (LMA) solution to the solar neutrino problem (or if there are 4 massive neutrinos).

CP violation:

$$A_{\text{CP}} = \frac{P(\nu_e \rightarrow \nu_\mu) - P(\nu_e \rightarrow \bar{\nu}_\mu)}{P(\nu_e \rightarrow \nu_\mu) + P(\bar{\nu}_e \rightarrow \nu_\mu)} \approx \frac{2\sin \delta}{\sin 2\theta_{13}} \sin \frac{1.27\Delta m^2_{12}L}{E},$$

assuming $\sin^2 2\theta_{12} \approx \sin^2 2\theta_{23} \approx 1$ (LMA).

10 kton detector,

2×10^{21} muon decays,

Large angle MSW:

$\Delta m^2_{12} = 10^{-4}$ eV2,

$\Delta m^2_{23} = 2.8 \times 10^{-3}$ eV2,

$\theta_{12} = 22.5^\circ$,

$\theta_{13} = 13^\circ$,

$\theta_{23} = 45^\circ$,

$\delta = -90^\circ$.

(hep-ph/9909254)

Matter effects dominate the asymmetry for $L > 1000$ km.
Measuring δ via T Violation

If the small mixing angle (SMA) solutions holds, may still be able to measure δ via T violation:

$$P(\nu_e \rightarrow \nu_\mu) - P(\nu_\mu \rightarrow \nu_e) =$$

$$4J \left(\sin \frac{1.27 \Delta m^2_{12} L}{E} + \sin \frac{1.27 \Delta m^2_{13} L}{E} + \sin \frac{1.27 \Delta m^2_{23} L}{E} \right),$$

$$J = \frac{1}{8} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta = \text{Jarlskog invariant.}$$

Matter effects could make $\sin 2\theta_{12}$ resonance for $E \approx 100$ MeV and $L \approx 10,000$ km (hep-ph/9911258).

However, not easy to measure $\nu_\mu \rightarrow \nu_e \rightarrow e^- \text{ (appearance)}$ against background of $\nu_e \rightarrow \nu_e \rightarrow e^+$ in a large, massive detector in which the electrons shower immediately. [Rates low also.]
Controlling the ν_e Flux via Muon Polarization

For μ^- decay in flight,

$$
\frac{dN_{\nu\mu}(\theta_{\nu\mu} = 0)}{dx} = 2Nx^2[(3 - 2x) + P(1 - 2x)], \\
\frac{dN_{\nu e}(\theta_{\nu e} = 0)}{dx} = 12Nx^2(1 - x)(1 + P),
$$

where $x = 2E_\nu/m_\mu$, and P is the muon polarization.

$[\theta_\nu = 0 \Rightarrow \text{colinear decay; at } P = -1, \text{ all colinear decays forbidden for } \theta_{\nu e} = 0, \text{ but one is allowed for } \theta_{\nu \mu} = 0.]$

Modulate the muon polarization to modulate the relative rates of $\nu_\mu \rightarrow \nu_e \rightarrow e^-$ and $\nu_e \rightarrow \nu_e \rightarrow e^+$.

(Blondel, http://alephwww.cern.ch/~bdl/muon/nufacpol.ps)
Summary

• The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.

• The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
 – With $\gtrsim 10^{20} \, \nu$’s/year can go well beyond other existing or planned accelerator experiments.
 – Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
 – Higher energy is favored: Rate $\propto E$ at fixed L/E; ν_τ appearance practical only for $E \gtrsim 30$ GeV.
 – Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or “bowtie” storage rings.
 – CP and T violation accessible with $\gtrsim 10^{21} \, \nu$’s/year.
 – Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.