In a magnet, the phase transition to the ferromagnetic state occurs as the temperature \(T \) is decreased below the Curie temperature. To study the “quantum” phase transition, we fix \(T \) at zero Kelvin while varying, instead, the magnetic field \(H \). The archetypal model is the transverse Ising magnet comprised of chains of spins (see Fig. A). A field, transverse to the chains, induces a transition from the ferromagnetic to the disordered state at the quantum critical point (QCP). This model is of great interest because domain walls (which separate spin-up from spin-down domains) mimic the quark-antiquark string \((q, \bar{q})\) (Fig. A). The material that best matches the theoretical Ising model is CoNb\(_2\)O\(_6\). Its QCP occurs at a transverse field \(H \) of 5.2 Tesla (Fig. B). Recently, Liang et al. [1] reported a detailed low-temperature heat capacity experiment that uncovered several unusual features. At the QCP, the heat capacity rises to a prominent peak that accounts for \(\sim 1/3 \) of all the spin degrees of freedom (Fig. C). Most interestingly, they find that the heat capacity of the spin excitations close to the QCP are fermion-like, reminiscent of the exact results obtained for an isolated chain (Jordan-Wigner fermion).

*In collaboration with S.M. Koopayeh and T.M. McQueen (Johns Hopkins Univ.)