Transport Experiments on 3D Topological insulators

N. P. Ong, Princeton Univ.

1. Transport in non-metallic Bi$_2$Se$_3$ and Bi$_2$Te$_3$

2. A TI with very large bulk ρ – Bi$_2$Te$_2$Se

3. SdH oscillations to 45 Tesla – Evidence for $\frac{1}{2}$ shift from Dirac Spectrum

4. Is there a Zeeman induced shift at n = 0?

5. Hydrostatic pressure – bulk band structure

Support from
NSF DMR 0819860
DARPA
ARO
Mass (gap) twist in 1D: polyacetylene

Early precursor in solid-state physics

Doped polyacetylene

\[H = \begin{bmatrix} m(x) & v_F(k_x - ik_y) \\ v_F(k_x + ik_y) & -m(x) \end{bmatrix} \]

Dirac \(H \) has an \(x \)-depdt mass term

Traps a kink state at \(m = 0 \) with fractional quantum nos.

Jackiw Rebbi, PRD ‘76
Su, Schrieffer, Heeger PRL ‘78
Goldstone Wilczek, PRL ‘81

Domain wall (soliton) traps \(\frac{1}{2} \) charge
A twist of the gap leads to topological surface states.
1. Mass twist \rightarrow helical state at zero mass

$$H = \begin{bmatrix} m(x) & v_F (k_x - ik_y) \\ v_F (k_x + ik_y) & -m(x) \end{bmatrix}$$

Twist is topologically stable

2. Strong spin-orbit int. \rightarrow giant Rashba term and spin-locking with opposite helicities

$$H_R = v_F \hat{n} \cdot \vec{\sigma} \times \mathbf{k}$$

$n = \text{surface normal}$
Helicity and large spin-orbit interaction

- Surface electron feels surface E-field. In its rest, sees field $B = v \times E$
- Large B (enhanced by SOI) locks spin $s \perp v$
- Rashba-like Hamiltonian

$$H = v_F \hat{n} \times k \cdot s$$

Helical, massless Dirac states with opposite chirality on opp. surfaces of crystal

Suppression of $2k_F$ scattering

Surface conductance

$$G_s = \left(\frac{e^2}{h} \right) k_F l$$

$$R_s \sim 400 \text{ Ohms} \quad \text{if } k_F l = 100$$
In \(\text{Bi}_2\text{Se}_3 \) and \(\text{Bi}_2\text{Te}_3 \)

- Only 1 surface state present
- Massless Dirac spectrum
- Large gaps -- 300 and 200 meV
Difficult to resolve surface states by transport

Onset of non-metallic behavior ~ 130 K

Bulk SdH oscillations seen in both n-type and p-type samples

Non-metallic samples show no discernible SdH (disorder from Ca dopants)

Checkelsky et al., PRL ‘09

\(\text{Bi}_2\text{Se}_3 \)
Shubnikov de Haas Oscillations in non-metallic Bi₂Te₃

Qu, NPO et al. Science, 2010

Non-metallic crystals

Metallic crystal

SdH oscillations in Hall conductivity

Chemical potentials of samples Q1, Q2, Q3
2D vs 3D Shubnikov de Haas period in bulk Bi$_2$Te$_3$

Non-metallic sample

Metallic sample

Qu, NPO et al. Science 2010

SdH period S_F scales as $\cos \theta$
Hence, 2D

Period S_F deviates from 2D
Hence, 3D ellipsoidal
Temperature dependence of Shubnikov de Haas amplitude

Qu, NPO et al. 2010

SdH amplitude decreases with T.

For massless Dirac states, we fit to

$$\Delta\sigma(H,T) \sim \frac{\lambda}{\sinh(\lambda)} e^{-D}$$

$$m_c = \frac{E}{v_F^2}$$

$$\lambda = \frac{2\pi^2 k_BT}{\hbar \omega_c}$$

$$D = \frac{2\pi^2 k_BT_D}{\hbar \omega_c}$$

Fits yield

$m_c = 0.1 \, m_0$

$v_F = 3.7 \text{ -- } 4.1 \times 10^5 \text{ m/s}$

(ARPES gets 4×10^5).
1. (Panel A) Hall conductivity σ_{xy} shows a “resonance” anomaly in weak H

2. (Panel B) After subtracting bulk contribution, the resonance is the isolated surface Hall conductivity G_{xy}. Peak position yield mobility μ (~9,000 cm2/Vs) and peak height yields metallicity $k_F\ell = 80$.

Panel B is a “snap shot” that gives mobility and $k_F\ell$ by inspection.
Fit (semiclassical)

\[\sigma_{xy} = \sigma_{xy}^b + G_{xy} / t \]

\[\sigma_{xy}^b = n_b e\mu_b \frac{\mu_b H}{[1 + (\mu_b H)^2]} \]

\[G_{xy} = \frac{e^2}{\hbar} k_F \ell \frac{\mu_s H}{[1 + (\mu_s H)^2]} \]

\[\mu_s = \frac{e \ell}{\hbar k_F} \]

\[\ell = 240 \text{ nm} \quad \mu_s = 8,000 \text{ cm}^2/\text{Vs} \]

- Good agreement with Dingle analysis & 2D massless Dirac state.
- Numbers rule out \(G_{xy} \) as 3D bulk term.
Comparison of transport parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>R_{obs} (Ω)</th>
<th>ρ_b (mΩcm)</th>
<th>μ_s (cm²/Vs)</th>
<th>k_Fl</th>
<th>G_s/G_{bulk}</th>
<th>μ_s/μ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi₂Se₃ (Ca)</td>
<td>0.01</td>
<td>30-80</td>
<td>< 200</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Bi₂Te₃</td>
<td>0.005</td>
<td>4-12</td>
<td>10,000 100</td>
<td>0.03</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Bi₂Te₂Se</td>
<td>300-400</td>
<td>6,000</td>
<td>2,800 40</td>
<td>~1</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Topological Insulator with sharply reduced bulk cond. \(\text{Bi}_2\text{Te}_2\text{Se} \)

Xiong, Cava, NPO

cond-mat/1011.1315

Also,

Y. Ando et al., PRB '11

Bulk mobility \(\mu_b \sim 50 \text{ cm}^2/\text{Vs} \)

Bulk carrier density

\(n_b \sim 2.6 \times 10^{16} \text{ cm}^{-3} \)
Band Structure of Bi$_2$Te$_2$Se

Indexing the Landau Levels (LLs)

Applied magnetic field B quantizes density of states (DOS) into Landau Levels

Dirac Landau Levels (LLs) spread out as B increases

Chemical potential μ approaches $n = 0$ level (Dirac Point)

μ falls between LLs when ρ_{xx} is a local maximum (at B_n)

Landau Level Index n determined by plotting n vs. $1/B_n$
Schrödinger vs Dirac spectrum

Check intercept of index plot in quantum limit $1/B \to 0$

$$\frac{1}{B_n} = (n+1/2)\frac{e}{hn_s} \quad \text{or} \quad \frac{1}{B_n} = \frac{e}{hn_s}n$$

Dirac states have intercept at $n = -1/2$ because states at $n = 0$ LL come from both conduction and valence bands.

Equivalently, effect of Berry phase π-shift
To approach quantum limit ($n = 0$ Landau Level),

apply very high B field (45 Tesla)
Amplitude of SdH oscillations is 17% of total conductance

Derivatives not needed to resolve SdH oscillations

Bulk resistivity $\rho_b = 4 - 8 \ \Omega \text{cm} \ (\sim 4 \ K)$

Oscillations seen in both G_{xx} and G_{xy}
Isolate SdH oscill terms ΔG, ΔG_{xy}

Largest oscillations seen to date in Bi based TI's

Peak-to-peak amplitudes

$\sim e^2/h$ in ΔG_{xy}

$\sim 4e^2/h$ in ΔG

Fit to Lifshitz expression yields

$\mu = 3,200 \text{ cm}^2/\text{Vs}$
Limiting behavior as $1/B_n \to 0$

Intercept $(1/B \to 0)$ at $n = -0.40 \to -0.55$

High-field SdH results support Dirac dispersion
Josephson supercurrent through a topological insulator surface state

M. Veldhorst1, M. Snelder1, M. Hoek1, T. Gang1, V. K. Guduru2, X. L. Wang3, U. Zeitler2, W. G. van der Wiel1, A. A. Golubov1, H. Hilgenkamp1,4 and A. Brinkman1*

2-probe resistance of exfoliated Bi\textsubscript{2}Te\textsubscript{3}

Incorrect identification of index field B_n
Oscillations are actually from bulk carriers
Intense E field applied to sample by ions
As V_G increases to more negative values, resistivity increases. Hall density decreases. Implies surface density decreases.
Liquid Gating Effect on Surface Quantum Oscillations

As $|V_G|$ increases, period of oscillations increases (Fermi Surface cross section decreases).

Also, amplitude of oscillations increases (more uniform density?)

Period increases 7-fold

Energy decreases by 2.6
Tuning SdH oscillations by liquid gating in fields up to 45 Teslas

Sample 2

n = 1/2
Sample 2
Tuning V_G from 0 → -3 V decreases FS area and n_s by ~7

SdH amplitude increases

At 14 Tesla, Lowest Landau Level accessed is $n = 1$!

Intercept in quantum limit $1/B_n \to 0$ gives $n = -1/2$, with much higher resolution.

Strong evidence for Dirac spectrum
E_F

Dirac Point

$n = 1/2$

$N = 0$

(a) Sample 1

$V_G = 0$

(b) Sample 1

$V_G = -2.1$

(c) Sample 2

$V_G = -6$

 integer n vs. $1/B$ (T$^{-1}$)
Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, Qi-Kun Xue
Quantized Anomalous Hall Effect in Magnetic Topological Insulators

Rui Yu,¹ Wei Zhang,¹ Hai-Jun Zhang,¹,² Shou-Cheng Zhang,²,³ Xi Dai,¹* Zhong Fang¹*