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1 Problem

If an observer, at rest (in flat spacetime) between a pair of mirrors each at distance D but
in opposite directions, emits two pulses of light simultaneously they return to the observer
simultaneously after time 2D/c, where c is the speed of light. Discuss the case that the
observer and mirrors have uniform acceleration (with respect to the inertial lab frame) along
their common line.

Compare with the case that the observer and mirrors are at rest in a “uniform gravita-
tional field”.

2 Solution

2.1 Accelerated Observer and Mirrors

We consider an observer, initially at z = 0, and two mirrors with z = ±D. All three have
uniform acceleration a = a ẑ with respect to an inertial frame in flat spacetime.1

The observer emits pulses of light along the ±z-axis at time t = 0, which thereafter
reflect off the mirrors and return to the observer at some later time. The light pulses obey,

zp± = ±ct (1)

until they reflect off the mirrors. The latter have equations of motion,

zm± = ±D +
c2

a

(√
1 + a2t2/c2 − 1

)
≈ ±D +

at2

2
, (2)

where the approximation holds if the velocity of the mirrors is small compared to c when the
light pulses reach them. Then, the times when the pulses reach the mirrors are related by,

t± =
c

a

(
±1 ∓

√
1 ± 2aD

c2

)
≈ D

c

(
1 ± aD

2c2

)
, (3)

expanding the square root to second order, and the corresponding positions of the mirrors
are,

zm± ≈ ±D +
aD2

2c2
(4)

1See Appendix A for discussion of the meaning of the term “uniform acceleration”.
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keeping terms only to order D2. The reflected photons obey, to the same order,

zp± = zm± ∓ c(t − t±) ≈ ±2D ∓ ct +
aD2

c2
. (5)

Of course, the observer has position z ≈ at2/2, so the reflected pulses reach the observer at
times,

Tp± ≈ c

a

(
∓1 ±

√
1 ± 4aD

c2
+

2a2D2

c4

)
≈ 2D

c
∓ aD2

c3
. (6)

The difference in the round-trip times of the two light pulses is,

ΔT ≈ 2aD2

c3
. (7)

For example, if a = g ≈ 10 m/s2 and D = 1 m, then ΔT ≈ 6 × 10−25 s. The period of
optical light is about 2× 10−15 s, so this time offset is about 3× 10−10 periods. To have the
time offset be one period, which might be measurable, we would need D ≈ 200 km.

2.2 Observer and Mirrors at Rest in a Uniform Gravitational Field

The notion of a uniform gravitational field is somewhat elusive.. If one associates gravi-
tational fields with sources of mass/energy, then physical gravitational fields are typically
associated with distortions of spacetime.2 On the other hand, the equivalence principle im-
plies that a uniformly accelerated reference frame in flat spacetime should be equivalent to
a uniform gravitational field. Of course, a uniform field over all spacetime is a mathematical
idealization, such that there is room for discussion as to the relevant physical approximation
to this concept. Lengthy debate on this topic may or may not have converged, but present
wisdom seems to be that reasonably physical assumptions as to the sources of a uniform
gravitational field are consistent with it being associated with flat spacetime [5, 8]-[20].

Often a weak, uniform gravitational is taken to be described by the metric,3

ds2 = dx2 + dy2 + dz2 − c2
(
1 +

gz

c2

)2

dt2, (|z| < c2/g), (8)

where g = 2πGρ, G is Newton’s gravitational constant and ρ is the density of mass/energy.
See, for example, sec. 97 of [10].

For spacetime described by the static metric (8), electrodynamics obey Maxwell’s equa-
tion with the alterations that the vacuum has relative permittivity and permeability given
by,

ε = μ =
1

1 + gz/c2
, (9)

2These distortions are often called “curvature”, but the case of hypothetical “cosmic strings” and “domain
walls” [3, 4] spacetime is flat with topological defects. Vacuum “domain walls” are not physically viable, but
remain an interesting theoretical construct.

3The metric (8) may have been first used by Kottler (1914) [21], and more clearly in sec. VII of [22].
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as discussed, for example, in sec. 90 of [1]. A consequence is that the speed, u, of light
emitted at z = 0 is a function of z according to,4,5

u(z) = c (1 + gz/c2), (10)

The round-trip times T± for light emitted upwards and downwards at z = 0 and reflecting
off mirrors at z = ±D (where gD � c2) are,

T± = 2

∫ ±D

0

±dz

u
≈ 2

c

∫ ±D

0

±dz (1 − gz/c2) =
2D

c
∓ gD2

c3
. (11)

The time difference between the two round-trips is,

ΔT =
2gD2

c3
, (12)

which is the same as eq. (7) for observer and mirrors accelerated in flat spacetime with a = g.
This is consistent with the popular understanding that a uniformally accelerated frame in
flat spacetime is equivalent to the “uniform gravitational field” described by the metric (8).6

If we approximate a uniform gravitational field by that at the surface of the Earth, then
the symbol g in eq. (10) becomes, approximately, g0(1 − z2/2R2

E) where g0 = GME/R2
E ,

G is Newton’s gravitational constant, ME and RE are the mass and radius of the Earth,
respectively. This results in a very small correction to eq. (12), such that in principle an
observer in a box with mirror walls at the Earth’s surface could determine that (s)he is not
in flat spacetime by performing the present experiment (for several different distances D; a
single result could always be interpreted as due to some value of uniform acceleration).

4Equation (10) appears near the end of Einstein’s 1907 paper [5].
5Our brief discussion avoids the issue of variation with z of the rate of clocks in a uniform gravitational

field. However, the metric (8) indicates that a clock (that reads time t) at position z has proper time interval
dτ = (1 + gz/c2)dt, such clock at z > 0 runs slower compared to proper time than a clock at z = 0. Hence,
reporting the speed of light at position z > 0 as u(z) = dz/dt = (dz/dτ)(dτ/dt) = c (1 + gz/c2) gives a
value larger than c. If light is emitted in the +z-direction at z = −c2/g its initial speed is zero according to
eq. (10), such that it takes an infinite time interval Δt to reach z = 0, and we speak of z = −c2/g as the
“event horizon” for the observer at z = 0. However, an observer at z = −c2/g could consider that the light
has local speed c, and the metric to be eq. (8) with z replaced by z + c2/g, such that the speed of light varies
with z according to u(z) = c (1 + g(z + c2/g)/c2) = c (2 + gz/c2), and the event horizon for this observer
is z = −2c2/g. Similarly, an observer at z = c2/g who considers the local speed of light to be c concludes
that light emitted at z = 0 takes an infinite time to reach him, so that in effect an observer at z = 0 cannot
communicate with one at z = c2/g. Hence, we say that the metric (8) is valid only for |z| < c2/g.

Another way to see this is to note that the gravitational redshift brings the energy of any photon emitted
at z = 0 to zero at z = c2/g [6], so there is no meaningful physical interaction possible between an observer
at z = 0 and one at z > c2/g.

A universe with a uniform gravitational field is effectively partitioned into regions of extent Δz = ±c2/g
around any observer. Each observer cannot know about the rest of the universe outside this domain. That is,
early cosmological visions that assumed a flat Earth and “turtles all the way down” were actually consistent
with general relativity.

6However, as discussed in Appendices B and C, the set of the accelerated observer plus two accelerated
mirrors with constant separation in the lab frame is not an accelerated frame (in which the separation of
objects at rest in that frame would be the same at all times), except for small times as considered here.
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2.3 Does a Uniform Gravitational Field Have a Source?

Using coordinates (x0, x1, x2, x3) = (ct, x, y, z), the metric tensors gij and gij corresponding
to eq. (8) have nonzero components,7

g00 =
1

g00
= f2(z) =

(
1 +

gz

c2

)2

, g11 = g22 = g33 = g11 = g22 = g33 = −1, (13)

such that gik gjk = δj
i . The nonzero Christoffel symbols are,

Γi,jk = Γi,kj =
1

2

(
∂gij

∂xk
+

∂gik

∂xj
− ∂gjk

∂xi

)
, Γ0,03 = Γ0,30 = −Γ3,00 = f

df

dz
≡ ff ′. (14)

The Riemann curvature tensor has nonzero components,

Rijkl =
∂Γi,jl

∂xk
− ∂Γi,jk

∂xl
+ gmnΓi,mkΓn,jl − gmnΓi,mlΓn,jk, (15)

R0330 = R3003 = −R0303 = −R3030 = ff ′′. (16)

The Ricci tensor has nonzero components,

Rij = gklRkilj , R00 = ff ′′, R33 = −f ′′

f
. (17)

The Ricci curvature scalar is,8

R = gijRij =
2f ′′

f
. (18)

Einstein’s gravitational equations are,

8πG

c4
Tij = Rij − gijR, (19)

T00 = − c4

8πG
ff ′′, T11 =

c4

4πG

f ′′

f
T22 =

c4

4πG

f ′′

f
T33 =

c4

8πG

f ′′

f
. (20)

Hence, the choice f(z) = 1 + gz/c2, for which f ′′ = 0, implies that the stress-energy tensor
Tij is everywhere zero. The “uniform gravitational field” corresponding to the metric (13)
has no source, or spacetime curvature, and is only a kind of “coordinate force” akin to the
centrifugal force and the Coriolis force.9,10

Requiring a uniform gravitational field to have an infinite planar source and flat spacetime
apparently leads to metrics with spatial anisotropy. See, for example, [3, 8, 15, 16, 17, 18,
19, 20].

7For the general case of symmetric metric tensors, see prob. 2, sec. 92 of [1].
8Probably, R = f ′′/f , such that T00 = T33 = 0, and I have errors somewhere.
9The metric (13) is valid only for z > z0 = −c2/g, which leaves open the possibility of sources at z < z0,

and in particular a plane sheet of mass at z = z0.
10As the nonphysical, mathematical idealization of a “uniform gravitational field” is associated with flat

spacetime (zero Ricci scalar), many people (including this author) consider it not to be an actual gravitational
field. However, others consider that even flat spacetime is a kind of gravitational field.
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A Appendix: Uniformly Accelerated Motion

“Uniform acceleration” cannot mean constant acceleration in the (inertial) lab frame, as
this would eventually lead to faster-than-light motion. Rather, we suppose (following Born
[23]) that the acceleration is uniform with respect to the instantaneous rest frame of the
accelerated object. Quantities in this frame will be designated with the superscript �. From
sec. 10 of Einstein’s first paper on relativity [24] we have that for acceleration parallel to the
velocity v of an object, the acceleration in the lab frame is related to that in the instantaneous
rest frame according to,

dv

dt
= (1 − v2/c2)3/2dv�

dt�
. (21)

In this, two powers of
√

1 − v2/c2 come from the transformation of relative velocity, and
another comes from time dilation.

For uniform acceleration a = dv�/dt�, eq. (21) can be integrated to find the velocity v.
Thus, the acceleration in the lab frame is related to that in the instantaneous rest frame
according to,

v√
1 − v2/c2

= at, and
dz

dt
= v =

at√
1 + a2t2/c2

. (22)

supposing that v = 0 when t = 0. Integrating eq. (22) we obtain,

z = Z +
c2

a

(√
1 + a2t2/c2 − 1

)
, (23)

where Z is the z-coordinate of the object at time t = 0. The (proper) time t� on a clock
carried by the accelerating object is related by,

dt� = dt
√

1 − v2/c2 =
dt√

1 + a2t2/c2
, (24)

and hence,

t� =
c

a
sinh−1 at

c
, t =

c

a
sinh

at�

c
. (25)

Using this, eqs. (22) and (23) can be rewritten as,

v = c tanh
at�

c
, and z = Z +

c2

a

(
cosh

at�

c
− 1

)
. (26)

As such, uniformly accelerated motion is often called “hyperbolic motion”.11

An object that extends from Z1 to Z2 when at rest at time t = 0 has extent |Z2 − Z1| at
all other times when all points in the object are subject to the same, uniform acceleration;
there is no Lorentz contraction according to lab-frame observers for this type of uniform
acceleration of an extended object.

Finally, we note that for times such that |at| � c, the position is well approximated by
the Newtonian form,

z ≈ Z +
at2

2
(|at| � c). (27)

11Hyperbolic motion appears to have been first discussed briefly by Minkowski [25], and then more fully
by Born [23] and Sommerfeld [26].
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B Appendix: Uniformly Accelerated Reference Frame

A set of uniformly accelerated observers can be used to define a uniformly accelerated refer-
ence frame. However, the distance between observers in a “rigid” frame must be independent
of time in that frame.12 If we use the set of observers with equal spacing in the inertial lab
frame at all times during their accelerated motion according to eq. (26), the distance between
observers would vary with time in the accelerated frame.13

An appropriate coordinate system (x′, y′, z′, t′) for a “rigid” frame whose origin has ac-
celeration g with the respect to the z-axis of the inertial lab frame, and which obeys the
metric (8), is defined by eq. (140), sec. 97 of [10],

x = x′, (28)

y = y′, (29)

z =

(
z′ +

c2

g

)
cosh

g ct′

c2
− c2

g
, (30)

ct =

(
z′ +

c2

g

)
sinh

g ct′

c2
. (31)

It is useful to note that according to eqs. (30)-(31),

cosh
gt′

c
=

√
1 +

(
gct

gz′ + c2

)2

, (32)

z =
gz′ + c2

g

√
1 +

(
gct

gz′ + c2

)2

− c2

g
, (33)

from which we obtain the velocity v in the lab frame of a point at constant z′ in the accelerated
frame as,

v =
dz

dt
=

gc2t

(gz′ + c2)

√
1 +

(
gct

gz′+c2

)2
= c tanh

gt′

c
. (34)

Note that,

√
1 − v2/c2 =

1

cosh gt′/c
, (35)

12July 24, 2020. In general relativity, any definition of a reference frame is valid, and a set of uniformly
accelerated observers with equal spacings at all times in the inertial lab frame does define a reference frame,
which is preferred by some authors, as in [27]. Here, we work in the spirit of special relativity, where reference
frames are “rigid”.

13Einstein missed this issue in his first discussion of accelerated motion in 1907 [28], as he only considered
accelerated observers with velocities, relative to an inertial frame, that were small compared to the speed
of light. However, Einstein did note that accelerated clocks at different positions run at different rates with
respect to the inertial frame.
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The lab frame acceleration of a point at constant z′ is,

a =
dv

dt
=

g

1 + gz′/c2

1[
1 +

(
gct

gz′+c2

)2
]3/2

=
g

1 + gz′/c2

1

cosh3 gt′
c

=
g(1 − v2/c2)3/2

1 + gz′/c2
. (36)

Recalling eq. (21) we see that the acceleration of point z′ in its instantaneous inertial rest
frame is,

a� =
g

1 + gz′/c2
, (37)

which depends on the position z′ in the accelerated frame. This further emphasizes the
difference between a “rigid” accelerated frame and a collection of observers whose acceleration
is the same in the lab frame.

The distance between nearby points in the accelerated frame, as measured at a fixed time
t in the lab frame, follows from eq. (33),

dz =
dz′

cosh gt′/c
=
√

1 − v2/c2 dz′ (constant t). (38)

Lab-frame observers find that, at time t, lengths in the “rigid” accelerated frame are Lorentz
contracted, as expected, according to their instantaneous lab-frame velocity v, when the
measurements are made at constant t.

Similarly, observers in the accelerated frame at time t′ of a small length dz′ find that
corresponding length dz in the lab frame is related according to eq. (30) by,

dz = dz′ cosh
gt′

c
=

dz′√
1 − v2/c2

(constant t′). (39)

That is, the lengths of objects in the lab frame are all also Lorentz contracted, when observed
from the “rigid” accelerated frame at constant t′.

The relation between time intervals in the lab and accelerated frames for clocks at fixed
z′ follows from eq. (31) as,

dt(z′) = dt′
(

1 +
gz′

c2

)
cosh

gt′

c
=

dt′(z′)√
1 − v2/c2

(
1 +

gz′

c2

)
(constant z′), (40)

In particular a clock at z′ = 0 is related by the time dilation,

dt0 =
dt′0√

1 − v2/c2
. (41)

As all clocks in the inertial lab frame run at the same rate, we can take dt(z′) = dt0 to find,

dt′(z′) = dt′0

(
1 +

gz′

c2

)
. (42)
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That is, clocks at larger z′ in the accelerated frame run faster than clocks at smaller z′,
relative to clocks in the inertial lab frame, as noted by Einstein in 1907 [5].

Likewise, using eq. (30) to eliminate z′ from eq. (31) in favor of z, we find,

t =
gz + c2

cg
tanh

gt′

c
, (43)

and hence,

dt = dt′
(
1 +

gz

c2

) 1

cosh2 gt′/c
= dt′

(
1 − v2

c2

)(
1 +

gz

c2

)
(constant z), (44)

Clocks at fixed z appear to observers in the accelerated from to run slow (time dilation), but
by a factor 1 − v2/c2 rather than

√
1 − v2/c2. In addition, this time-dilation factor varies

with the coordinate of the clock in the lab frame.
For completeness we note that eqs. (30) and (43) can be combined to give,

1

cosh gt′/c
=

√
1 −

(
gct

gz + c2

)2

, (45)

z′ =
z + c2/g

cosh gt′/c
− c2

g
=

gz + c2

g

√
1 −

(
gct

gz + c2

)2

− c2

g
, (46)

The inverses of transformations of (28)-(31) are,

x′ = x, (47)

y′ = y, (48)

z′ =

√(
z +

c2

g

)2

− c2t2 − c2

g
, (49)

ct′ =
c2

g
tanh−1

(
ct

z + c2/g

)
. (50)

C Appendix: Bell’s Spaceship Paradox

An interesting example of the difference between a “rigid” accelerated frame and a collection
of observers with the same lab-frame accelerations was given by Dewan and Beran [29, 30],
and popularized by Bell [31].

Here, two spaceships move, with a rope connecting them, along the z-axis with identical
accelerations and constant separation dz for any time t in the inertial lab frame. Then,
according to eq. (38), the separation of the spaceships in the accelerated frame of, say, the
left spaceship is dz′ = dz/

√
1 − v2/c2 > dz. In the frame of either of the spaceships the rope

appears to be stretched, and eventually breaks.
This result is very disconcerting to those who think that the spaceships define a “rigid”

accelerated frame, in which the distance between two points would be independent of time.
But, as discussed around eq. (39), the distance between the spaceships is increasing in the
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“rigid” accelerated frame associated with either of the spaceships, so it should be no surprise
that the rope eventually breaks.

According to the equivalence principle, a uniformly accelerated frame is equivalent to a
frame at rest in a uniform gravitational field. An object at rest in a uniform gravitational
field has a constant length, as does an object in a uniformly accelerated frame (according to
observers in that frame). However, many people seem to suppose that the two spaceships
in Bell’s paradox define a uniformly accelerated frame, in which case the rope should not be
expected to break. Or, if one accepts that the rope breaks, but one supposes that the two
spaceships define a uniformly accelerated frame, then according to the equivalence principle,
a rope suspended at rest in a uniform gravitational field would be expected to break after a
while.

These paradoxes reinforce the insight of Appendix B that a uniformly accelerated frame
is not a collection of observers with the same acceleration in the inertial lab frame.14

D Appendix: Additional Comments on the

Equivalence Principle

This section added April 24, 2020.
In 1920, Einstein [52] recalled his invention of the equivalence principle: When I was busy

(in 1907) writing a summary of my work on the theory of special relativity for the Jahrbuch
für Radioaktivität und Elektronik [5], I also had to try to modify the Newtonian theory of
gravitation such as to fit its laws into the theory. While attempts in this direction showed
the practicability of this enterprise, they did not satisfy me because they would have had to
be based upon unfounded physical hypotheses. At that moment I got the happiest thought
of my life in the following form:

In an example worth considering, the gravitational field has a relative existence only in a
manner similar to the electric field generated by magneto-electric induction. Because for an
observer in free-fall from the roof of a house there is during the fall – at least in his immediate
vicinity – no gravitational field. Namely, if the observer lets go of any bodies, they remain
relative to him, in a state of rest or uniform motion, independent of their special chemical
or physical nature. The observer, therefore, is justified in interpreting his state as being “at
rest”.

Einstein’s first published statement of the equivalence principle was at the end of sec. 17
of [5] (1907): we ... assume the complete physical equivalence of a gravitational field and a
corresponding acceleration of the reference system.15

Einstein’s second published statement of the equivalence principle (1911) was at the end
of sec.1 of [54]: By theoretical consideration of processes which take place relative to a system
of reference with uniform acceleration, we obtain information as to the behavior of processes
in a homogeneous gravitational field.

14Additional commentaries of possible amusement are in [32]-[51].
15Some people, perhaps including Einstein (see, for example, [53]), interpret the “complete physical

equivalence” to mean that there could be no physical system without a gravitational field. Others consider
that there could be spacetime without a gravitational field, namely “flat” spacetime in which there is no
curvature (zero Ricci scalar = zero gravity). The comments below reflect the latter attitude.
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Einstein’s comments on the equivalence principle in sec. 2 of his 1916 review of general
relativity [55] include: Let K′ be a second system of reference which is moving relative to
K in uniformly accelerated translation. Then relative to K′, a mass sufficiently distant from
other masses would have an accelerated motion such that its acceleration and direction of
acceleration are independent of the material composition and physical state of the mass.

Does this permit an observer at rest relative to K′ to infer that he is on a “really”
accelerated system of reference? The answer is in the negative; for the above-mentioned
of freely movable masses relative to K′ may equally well be interpreted in the following
way. The system of reference K′ is unaccelerated, but the space-time territory in question is
under the sway to a gravitational field which generates the accelerated motion of the bodies
relatively to K′.

This view is made possible for us by the teaching of experience of the existence of a field
of force, namely the gravitational field, which possesses the remarkable property of imparting
the same acceleration to all bodies.
Here, Einstein supposes that the acceleration due to gravity of a mass is independent of the
velocity of the mass, even though he had shown that in his theory the gravitational deflection
of light is twice the “Newtonian” value (sec. 22 of [55]).

D.1 Limitations to the Equivalence Principle

The equivalence applies only locally, not globally, as nonuniform gravitational fields exist.
This was noted briefly in Einstein’s above comments of 1920.

A feature which is seldom mentioned is that the version of the equivalence principle which
states that the acceleration due to gravity is independent of the “physical state of the mass”
applies only to the behavior of objects with speeds much less than that of light. See, for
example, [56], which reviews how the acceleration of gravity depends on the velocity, and
how the force of gravity for radial motion with vr > c/

√
3, with respect to a spherical source,

is repulsive rather than attractive.

D.2 Some Consequences of the Equivalence Principle

A consequence of the equivalence principle is that an observer at rest with respect to the
source of a gravitational field is equivalent to an accelerated observer in zero gravity.16

Einstein’s “happy thought” of 1907 was that an observer in free fall in gravity (who is
accelerated with respect to an observer at rest in the gravity) is equivalent to an inertial
observer in zero gravity.17

Note also that if the acceleration of gravity is g at some point at rest in a gravitational
field, then the equivalent acceleration in zero gravity is g according to an accelerated observer

16As noted above, we take “zero gravity” to mean “zero Ricci scalar”, which includes the idealization of
a completely uniform “gravitational” field. In this view, the equivalence principle is somewhat trivial when
applied to a uniform “gravitational” field, which is simply an interpretation of flat spacetime by a uniformly
accelerated observer.

17Not all observers who are accelerated with respect to observers who are at rest in gravity are equivalent
to inertial observers in zero gravity. Only free-falling observers in gravity are equivalent to inertial observers
in zero gravity.
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in an inertial frame, rather than according to an inertial observer. Since the g of gravity
could be static, and last forever, it cannot correspond to a constant acceleration g with
respect to an inertial frame in zero gravity, which would imply eventual speeds faster than
light.

That is, constant acceleration with respect to an inertial frame in zero gravity is not
equivalent to a constant/uniform gravitational field.18

Observers at rest in an inertial frame maintain a constant distance between one another.
Observers in free fall in uniform gravity keep a constant distance between one another,

if they start falling from rest at the same moment/time.
Observers in zero gravity who start from rest at the same time in some inertial frame,

and are accelerated uniformly, maintain a constant separation according to observers in the
original inertial frame. However, according to the accelerated observers, their separation
increases with time. This is Bell’s spaceship paradox, discussed in Appendix C above.
Furthermore, the distance between two objects at rest in the inertial frame (along a line
parallel to the acceleration vector) appears to decrease with time according to the accelerated
observer, as discussed in Appendix B above.

D.3 Two Objects Accelerated with Respect to an Inertial Frame

Two objects can accelerate with respect to an inertial frame in zero gravity, with constant
a = g in their accelerated frames, such that the distance between the two objects remains
constant with respect to the inertial frame. However, the distance between these two objects
is not constant with respect to their accelerated frames (which are different for the two
objects).

The equivalent of this is two objects that remain at rest, with constant separation, in a
constant/uniform gravitational field of g.

D.4 Two Objects at Rest in an Inertial Frame

The equivalent of objects in an inertial frame in zero gravity is free-falling objects in gravity.
The equivalent of the two objects in an inertial frame in zero gravity having constant

separation is that they free fall in gravity such that their separation is constant in their
own free-falling frames. This does not mean that their separation is constant with respect
to observers at rest in gravity (which are the equivalents of accelerated observers in zero
gravity). Recall form Appendix B above that according to an accelerated observer in zero
gravity of two objects at rest in an inertial frame, their separation decreases as their velocity
relative to the accelerated observer increases in magnitude. Hence, the equivalent is that the
separation of the free falling objects decreases as they fall, according to observers at rest in
the gravity. This mean that the “upper” object started free falling earlier than the “lower”
object.

18Constant acceleration with respect to an inertial frame in zero gravity is not equivalent to a con-
stant/uniform gravitational field.
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[5] A. Einstein, Über das Relativitätsprinzip und die aus demselben gezogene Folgerungen,
Jahrb. Radioakt. Elektron. 4, 411 (1907); corrections in 5, 98 (1908),
http://physics.princeton.edu/~mcdonald/examples/GR/einstein_jre_4_411_07.pdf

English translation with commentary in H.M. Schwartz, Einstein’s comprehensive 1907
essay on relativity, Am. J. Phys. 45, 512, 811, 899 (1977),
http://physics.princeton.edu/~mcdonald/examples/GR/einstein-schwartz_ajp_45_512_77.pdf

translated as On the relativity principle and the conclusions drawn from it, in The col-
lected papers of Albert Einstein. Vol. 2: The Swiss years: writings, 1900-1909 (Princeton
U. Press, 1989), http://physics.princeton.edu/~mcdonald/examples/GR/einstein_jre_4_411_08_english.pdf

[6] L.B. Okun, K.G. Selivanov and V.L. Telegdi, On the interpretation of the redshift in a
static gravitational field, Am. J. Phys. 68, 115 (2000),
http://physics.princeton.edu/~mcdonald/examples/GR/okun_ajp_68_115_00.pdf

[7] T. Levi-Civita, Condizioni di integrabilità e comportamento geometrico spaziale, Rend.
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