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1 Problem

When Faraday identified/named diamagnetism (relative permeability μ < 1) in 1845, he
reported in Arts. 2253-2260 of [1] that a glass rod would align itself at right angles to the
lines of magnetic field of his laboratory electromagnet.1 He also noted in Art. 2269 that such
object moved “into the positions of weakest magnetic action”.

Faraday’s test objects were suspended from a string, but W. Thomson [5, 6] (at age 23)
soon noted that it should be possible to levitate diamagnetic objects, although he speculated
that the magnetic force would be too weak for such levitation to be observed in practice.

Diamagnetic levitation was first observed in 1939 [7]. See also [8, 9, 10, 11, 12, 13]. A
superconductor can be regarded as an extreme form of diamagnetism, with relative perme-
ability μ = 0; levitation of a superconductor was first observed in 1945 [14, 15].

A recent example of diamagnetic levitation of a graphite rod has been given in [16, 17], in
which the magnetic field was provided by a pair of cylindrical magnets, each with horizontal
(diametric) magnetization, perpendicular to the axes of the cylinders, as illustrated below
(PDL = parallel dipole line).

1In a footnote on p. 21 of [1], Faraday remarked that Coulomb had observed such behavior for a cocoon
of silk in 1802 [2], and Becquerel confirmed this behavior for a wooden needle in 1827 [3]. The earliest report
of a diamagnetic effect may be due to Brugmans (1778) [4] who observed that bismuth was repelled by a
magnet.
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For long rods, the equilibrium orientation of the rod is transverse to the magnetic fields
lines as show above, consistent with Faraday’s observations. However, sufficiently short rods
align themselves with the field lines. Explain this behavior.

2 Solution

2.1 Diamagnetic Rod in a Uniform Magnetic Field

In his early papers on diamagnetism, Thomson [5, 6, 18, 19] argued that a diamagnetic
rod, like a paramagnetic/ferromagnetic rod, would align itself with a uniform magnetic field,
while Faraday’s observations of transverse alignment were due to the nonuniformity of the
laboratory magnetic field. See also [20].

A uniform, permeable sphere has magnetization density M parallel to the external mag-
netic field B0,

2 so the magnetic torque density τ = M × B0 = 0, and the sphere does not
rotate. If a diamagnetic rod had magnetization parallel to B0, it also would not rotate or
align itself perpendicular to the magnetic field as observed by Faraday [1]. Hence, we need
to consider departures from the approximation that M = M B̂0 to understand the rotational
behavior of a diamagnetic rod, although this approximation is sufficient for an understanding
of the translational stability of the rod (see the Supplementary Material to [16]).

The experiments [16, 17] were performed with a diamagnetic cylinder, for which there is
no simple analytic relation between M and B0,

3 so we will instead consider a diamagnetic
spheroid with uniform permeability μ, for which such a relation does exist, as first deduced
by Poisson [21].4

2.1.1 Spheroidal Rod with Uniform Permeability in a Uniform External Field

Thomson [19] gave a qualitative discussion of the torque on an ellipsoid with uniform per-
meability in a uniform external field, and Maxwell gave a more quantitative discussion in
Art. 438 of [28]. Here, we restrict ourselves to a prolate spheroid of semimajor axis r1 and
semiminor axes r2 =

√
1 − ε2 r1, where ε < 1 is called the eccentricity.

In a coordinate system (x, y, z) based on the principal axes of the spheroid, with the x
principal axis being the longest, the magnetic field H inside it can be written (in Gaussian
units) as

Hi = H0,i − 4πNiMi, with Nx = N =
1 − ε2

2ε3

(
ln

1 + ε

1 − ε
− 2ε

)
, Ny = Nz =

1 − N

2
, (1)

for the case of a uniform external magnetic field B0 = H0, as given in Art. 438 of [28].5 Also,

2This result was apparently first deduced by Poisson [21].
3Approximate models of the magnetization of objects other than ellipsoids began with Green, p. 106

[22], are were continued by Kirchhoff [23]. For summaries of more recent work, see [24, 25].
4Early rederivations of Poisson’s result include Neumann [26], a footnote by Thomson on p. 471 of [27],

and Arts. 437-438 of Maxwell’s Treatise [28]. See also secs. 4, 8 and 29 of [29].
5The quantities Nx = N , Ny and Nz obey Nx +Ny +Nz = 1, and are called the demagnetization factors,

perhaps following [31].

2



B = μH = H + 4πM, so that M = (μ − 1)H/4π = χH/4π, and

Mi =
χH0,i

4π(1 + χNi)
≈ χH0,i

4π
(1 − χNi) , Hi =

H0,i

1 + χNi
≈ H0,i(1 − χNi), (2)

where χ = μ − 1 is the magnetic susceptibility, and the approximation holds for small |χ|.
Thus, the magnetization of the spheroid is uniform, although not parallel to H0 = B0, unless
the external field is parallel to a principal axis of the spheroid. The total magnetic moment
of the spheroid is m = M Vol, where Vol = 4πr1r

2
2/3 is the volume of the spheroid.

For a sphere (ε = 0), N = 1/3, M = χH0/4π(1 + χ/3) = 3(μ − 1)H0/4π(μ + 2),6 while
for a very long needle (ε → 1), N → 0 and M → (μ − 1)H0/4π.

There is no net force on a permeable spheroid in a uniform external field, while the torque
on it is, taking the field to lie in the x-y plane7

τ = m × B0 = (mxB0,y − myB0,x) ẑ =
χB0,xB0,yVol

4π

[
1

1 + χN
− 1

1 + χ 1−N
2

]
ẑ

=
χ2B0,xB0,yVol

8π

1 − 3N

(1 + χN)(1 + χ 1−N
2

)
ẑ ≈ χ2B0,xB0,yVol

8π
(1 − 3N) ẑ. (3)

The factor 1 − 3N indicates that the torque vanishes for a sphere, as expected.
The sign of the torque is independent of the sign of χ (except for a certain range of

χ < −1, μ < 0, which is not possible for “ordinary” materials), i.e., the sign is the same
for both diamagnetic and paramagnetic objects. Since 0 < N < 1/3 for a prolate spheroid,
the sign of the torque is that same as that of the product B0,xB0,y, which implies that the
torque tends to align the long axis (x) of the spheroid with the external magnetic field
(as anticipated by Thomson [5], but first explicitly demonstrated in Art. 438 of [28], which
eq. (3) transcribes).8

The torque (3) is proportional to χ2 for small |χ|, rather than to the susceptibility χ,
which latter behavior we might näıvely have expected from the form M = χH/4π. However,
if the magnetization M were strictly proportional to H0 = B0, then the torque would vanish.
So, the existence of a nonzero torque on the permeable spheroid is related to the existence
of the quadratic, correction term in the expression (2) for the magnetization.

2.1.2 Torque via an Energy Method

The torque τ = m × B0 on a magnetic dipole m in an external magnetic field B0 (that is
uniform over the dipole) can be deduced from an interaction energy

U = −m · B0 = −mB0 cosα (|m| fixed), (4)

Only for ellipsoids with uniform permeability, and in a uniform external field, are the demagnetization
factors independent of the permeability and of position (contrary to the assumption in [32]).

Until 1945, the demagnetization factors were defined to be 4π times those now used (which latter follow
the convention advocated in [33].

6Compare sec. 5.11 of [30].
7Note that B0,xB0,y = (1/2)B2

0 sin 2α, where α is the angle of B0 to either the x-axis = long axis of the
spheroid. The torque (3) acts to decrease angle α, so if we replace B0,xB0,y by (1/2)B2

0 sin 2α, we should
give the revised equation an overall minus sign. See also eq. (10).

8A bismuth bar (of unspecified shape) was reported in [32] to align itself with the field of a strong magnet.
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for a dipole of fixed magnitude, where α is the angle between m and B0, via the relation

τ = −∂U

∂α
= −mB0 sin α, τ = m× B0 (|m| fixed), (5)

noting that the minus sign in −mB0 sin α means that the torque acts to decrease angle α,
i.e., to align m with B0, The force

F = ∇(m ·B0), (6)

on the magnetic dipole is agreeably deduced as F = −∇U .
If the magnetic dipole moment is not of fixed magnitude, as for a permeable object, then

in the approximation that m = kB0 , we recover the force law (6) if we take the interaction
energy to be U = −m · B0/2. This suggests that for permeable media where m = χH/4π,
we take the interaction energy to be

U = −
∫

χH · B0

8π
dVol (permeable object). (7)

More complete justifications of eq. (7) are given in sec. 29 of [29] and in [34], where U is
called the free energy.

For the example above of a permeable, prolate spheroid whose long (x) axis makes angle
α to uniform magnetic field B0 = B0(cos α x̂ + sinα ŷ), the H field inside the spheroid is

H =
B0 cos α

1 + χN
x̂ +

B0 sinα

1 + χ1−N
2

ŷ, (8)

according to eq. (2). Then, the interaction energy (7) is

U = −χB2
0Vol

8π

[
cos2 α

1 + χN
+

sin2 α

1 + χ 1−N
2

]
, (9)

and the torque (in the z-direction) is

τ = −∂U

∂α
=

χB2
0 sin 2αVol

8π

[
−1

1 + χN
+

1

1 + χ (1−N
2

]

= −χB2
0 sin 2αVol

16π

1 − 3N

(1 + χN)(1 + χ 1−N
2

)
. (10)

This agrees with eq. (3), which was obtained by direct computation of m × B0, noting the
sign convention mentioned in footnote 7, that the overall minus sign in eq. (10) means the
torque reduces angle α and aligns the long axis of the prolate spheroid with B0.

2.2 Spheroidal Rod in the Field of Two Long Diametric Magnets

We now turn to the configuration of the experiment [16], as shown in the figure on p. 1. In
the folowing, we approximate the graphite cylinder as a prolate spheroid, and also take the
limit of very long magnets.
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2.2.1 The Field of a Pair of Diametric Magnets

We now use the coordinate system of the figure on p. 1 (which is not the coordinate system
based on the axes of the spheroid that was used in sec. 2.1). Now, the magnetic field is in
the x-direction, and a levitated rod has its axis parallel to the z-axis. The y-axis is vertical.

The two diametric magnets of radius a each have internal field Bint = BM x̂, where BM

is a constant of order 10,000 gauss. Assuming these magnets to be very long, their external
fields have the form [35]

Bext =
BMa2

r′4
[
(x′2 − y′2) x̂′ + 2x′y′ ŷ′] , (11)

in a coordinate systems where the axis of the rod is the z′-axis. In the laboratory coordinate
system, the rods have axes ±a, 0, z) to the total external field B0 has nonzero components

B0,x = BMa2

{
(x − a)2 − y2

[(x− a)2 + y2]2
+

(x + a)2 − y2

[(x + a)2 + y2]2

}
, (12)

B0,y = 2BMa2

{
(x− a) y

[(x − a)2 + y2]2
+

(x + a) y

[(x + a)2 + y2]2

}
. (13)

In the y-z symmetry plane, B0,x(0, y, z) = 2BMa2(a2 − y2)/(a2 + y2)2 and B0,y(0, y, z) = 0.
In the experiment [16], levitation was observed for y ≈ a/

√
2. In the following, we

suppose that the equilibrium position of the center of the spheroid is y = a/
√

2, at which
point the external magnetic field is B0(0, a/

√
2, z) = 4BM x̂/9.

We now wish to deduce a condition such that if the spheroid has its long axis in the
horizontal plane y = a/

√
2, and makes a small angle to the z-axis, the torque on it will

push it towards that axis, leading to alignment transverse to the external magnetic field (in
contrast to alignment with the magnetic field as occurs if that field were uniform).

2.2.2 Approximation to the Interaction Energy

As discussed in sec. 2.1,2, the torque on a permeable object in a static, external magnetic
field B0 can be computed from the interaction energy U according to

τα = −∂U

∂α
, U = −

∫
χH · B0

8π
dVol (permeable object), (14)

where τα is the torque component along an axis perpendicular to the plane in which α is
the angle between the magnetic moment m of the object and the direction of the magnetic
field B0(0) at its (magnetic) center. The difficulty is that except for ellipsoids in a uniform
external field, H inside the object cannot be expressed in a simple analytic form.

One approximation would be to replace the factor B2
0 Vol in eq. (9) by

∫
B2

0 dVol, which
would simply increase the result (10) by a small amount. This would have the merit of still
predicting zero torque on a sphere in a nonuniform magnetic field, but it would predict that
a prolate spheroid (of any eccentricty ε > 0) would align its long axis with the magnetic field
of the pair of diametric magnets, in contrast to the observation of transverse alignment for
r1/r2

>∼ 4 in the experiment [16].
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2.2.3 Approximation to the form τ = M× B

The result (3) for the torque on the permeable spheroid in a uniform magnetic field B0 is
noteworthy in that the magnetic force on any element of the spheroid,

dF = −∇(M dVol · B0), (15)

is zero, so that the computation τ =
∫

r × dF also yields a null result.When the external
field is nonuniform, we compute the torque as

τ =

∫
M(r) × B0(r) dVol ≈ M× B0(0) −

∫
r × ∇[M(r) · B0(r)] dVol ≡ τ 1 + τ 2. (16)

The Torque Term τ 1 ≈ M ×B0(0)

We estimate the first term, τ 1, in the expression (16) for the torque on a diamagnetic
prolate spheroid by approximating the external magnetic field throughout the spheroid by
its value B0(0, a/

√
2, z) = 4BM/9 at the center of the spheroid, and then approximating the

form (2) for the magnetization of the spheroid by

M ≈ χH0

4π
=

χB0

4π
≈ χBM

9π
x̂. (17)

noting that |χ| ≈ 10−5 for graphite. Then, when the long axis of the spheroid makes small
angle α to the z-axis in the lab coordinates, the result (3) (in the coordinate system of the
principal axes of the spheroid) becomes

τ 1 ≈ αχ2B2
M (1 − 3N)Vol

18π
ŷ. (18)

Th torque τ 1 pulls the long axis of the spheroid away from the z-axis and tends to align it
with the x-axis = direction of the external magnetic field.

The Torque Term τ 2 = − ∫ r × ∇[M(r) · B0(r)] dVol

We need to compute the y-component of the torque integral τ 2 of eq. (16) to order α =
angle of the long axis of the spheroid to the z-axis.

Using the first approximation for the magnetization density of eq. (17), we have that

τ 2,y ≈ − χ

4π

∫
z
∂B2

0

∂x
dVol. (19)

In a further approximation, we replace ∂B2
0(x, y)/∂x in a slice of the spheroid at constant z

by its value on the axis of the spheroid, x = sinα z ≈ α z, i.e., by ∂B2
0(α z, a/

√
2)/∂x where

α z � a. Now,

∂B2
0

∂x
= 2B0,x

∂B0,x

∂x
+ 2B0,y

∂B0,y

∂x
. (20)

Since we can approximate f(x) and f ′(x) as

f(x) = f(0) + x f ′(0) + · · · , f ′(x) = f ′(0) + x f ′′(0) + · · · , (21)
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we also have that

f(x)f ′(x) = f(0)f ′(0) + x[(f ′(0))2 + f(0)f ′′(0)] + · · · (22)

In the present example, recalling eqs. (12)-(13) (and using Wolfram Alpha),

B0,x(0, a/
√

2) =
4BM

9
,

∂B0,x(0, a/
√

2)

∂x
= 0,

∂2B0,x(0, a/
√

2)

∂x2
= −336BM

81a2
, (23)

B0,y(0, a/
√

2) = 0,
∂B0,xy(0, a/

√
2)

∂x
= −40

√
2BM

27a
, (24)

so that

∂B2
0(α z, a/

√
2)

∂x
≈ 2α z

⎡
⎣−4BM

9

336BM

81a2
+

(
40
√

2BM

27a

)2
⎤
⎦ =

3712α zB2
M

729a2
. (25)

Then, the second torque integral (19) is

τ 2,y ≈ − χ

4π

3712α B2
M

729a2

∫
z2 dVol ≈ − χ

4π

3712α B2
M

729a2
2πr2

2

∫ r1

0

z2

(
1 − z2

r2
1

)
dz

≈ −αχ B2
M

4π

(2r1)
2

a2
Vol, (26)

using that the transverse area of the spheroid, for small angle α is πr2
2(1 − z2/r2

1) and its
volume is 4πr1r

2
2/3. The negative sign of τ 2,y implies that it tends to align the long axis of

the diamagnetic spheroid with the z-axis, i.e., transverse to the magnetic field lines

The spheroid will align itself transverse to the magnetic field for all lengths l = 2r1 such
that τy is negative. Comparing eqs. (18) and (26), this implies that l/a >∼

√
χ(1 − 3N),

which suggests that only rods much shorter than those used in the experiment [16] would
align themselves with the field lines, contrary to the observations that rods with l/a <∼ 1/3
aligned themselves with the field.

A general feature of the present model is that the torque τy,1 which aligns the rod with
the field lines scales as χ2, while the torque τ y,2 which aligns the rod transverse to the field
lines scales as χ. Since the susceptibility χ is extremely small for graphite, a transition from
transverse to parallel alignment for l/a <∼ 1/3 requires the dimensionless numerical coefficient
in the result for τ y,2 to be much smaller than that found in the present approximation.

Also, the present model does not successfully predict that the torque on a permeable
sphere would be zero, even when in a nonuniform magnetic field.

It would be interesting to have experimental data on a paramagnetic spheroid/rod, for
which the sign of the susceptibility χ is positive (rather than negative as for a diamag-
netic object). If the torque in a nonuniform field varied as χ rather than as χ2, then (I
believe) a paramagnetic spheroid/rod would show no stability with alignment transverse to
the magnetic field.

The susceptibility of aluminum is about 1.6 × 10−6 (in Gaussian units), which is nearly
equal and opposite to that of graphite (≈ −1 × 10−6).
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