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1 Problem

This problem is motivated by the use of crystals as detectors of energetic charged particles
that pass completely through the crystal, leaving a trail of electron-ion pairs. Although
the crystals are nominally insulators, the electrons so liberated are in the conduction band
and can be separated from the ion by a DC electric field, resulting in a signal pulse on
the electrodes plated onto opposite faces of the crystal.1,2,3 However, recombination of
the drifting electrons at impurity sites is an issue, and it was eventually realized that the
high purities of germanium and silicon required for successful transistors are also good for
crystalline particle detectors.4 In addition, p-n diode junctions proved to be suitable for
particle detectors [10].

A typical silicon p-n junction is illustrated below, in which a potential difference ΔV ≈
0.8 V develops across the junction in the absence of an external bias voltage,5 due to the
layers of (space) charge, a few μm thick. The p-side of the junction is doped with a bulk
number density Np (or Na) of atoms (such as boron) with 3 valence electrons (compared to 4
for Si), called acceptors in that these atoms can accept electrons from neighboring atoms, the
motion of which electrons in one direction corresponds to a current of (electrically positive)
holes in the other. The n-side is doped with number density Nn (or Nd) of atoms with 5
valence electrons (such as phosphorus), called donors.6 A electron current can flow from the
n-side to the p-side only if an external (forward) bias voltage Vp − Vn > ΔV is applied, and
no (significant) electron current flows from the p-side to the n-side for any applied voltage
less than this. The p-n junction acts as a diode/rectifier.

Doped silicon has “free” charge carriers, predominantly holes in p-doping and predomi-
nantly electrons in n-doping. As such, the can be no electric field inside the doped silicon

1Crystals with metallic electrodes are metal-semiconductor junctions, first investigated by Braun in 1874
[1]. Popular interest in such junctions arose in 1906 following the discovery that a metal-carborundum
junction rectifier could be used to detect radio signals in what is now call a crystal radio set [2, 3].

2The metal-semiconductor junctions are often called Schottky (barrier) diodes [4], although the full
theory of their operation is due to Bethe [5].

3The earliest attempt at detection of an electrical signal due to (α) particles in a crystal appears to have
been in 1906 by a student of Röntgen [6]. The first successful detection may have been by van Heerden in
1946 [7]. Some of the rapid development thereafter in the late 1940’s can be traced in [8].

4Not all energy deposited in the crystal by energetic charged particles is goes into creation of electron-
ion pairs. Some energy goes into the emission of optical photons, which can be detected externally if the
crystal is transparent. The development of purer material for the semiconductor industry also led to new
developments in crystal scintillators [9].

5ΔV is necessarily less than the gap of ≈ 1.17 V (at room temperature) between the valence and
conduction bands in Si. Thermal excitations result in a nonzero charge densities on either side of the junction,
whose associated electric field leads to the potential difference ΔV , as first well-discussed by Shockley [11].

6Doped silicon is electrically neutral when subject to zero external potential difference.
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under reverse bias, unless all of the “free” charge carriers have been removed, and the silicon
is said to be depleted.

Charge is conserved during the depletion process, and the semiconductor remains elec-
trically neutral as a whole. The depletion region has a bulk electric charge (space charge)
density ρ related doping density by7

ρdepletion region =

⎧⎨
⎩ −eNp = −eNa (p-side),

eNn = eNd (n-side),
(1)

where e > 0 is the magnitude of the charge of an electron. Overall electrical neutrality
implies that ∫

p−side

ρ dVol +

∫
n−side

ρ dVol = 0. (2)

Note that the depletion process can continue (with increased reverse-bias voltage) only so
far as to fully deplete either the p-side or the n-side, depending on which side has the fewer
total dopant atoms.

When a p-n junction is used as a detector of charged particles (or of photons) the junction
is reverse biased such that ionization electrons (photoelectrons) drift toward the external
contact on the n-side.8 To maximum the volume over which ionization electrons can be

7The density of charge carriers drops to zero over distances of order 1 μm at the edges of the depletion
region, as governed by thermal effects.

8In the language of particle detectors the n-side contact is called the anode, but in the language of
semiconductor diodes (which must be forward biased to conduct) it is called the cathode.
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quickly collected, it is desirable that the semiconductor be as fully depleted as possible.9

What is the minimum reverse-bias voltage for maximal depletion, and what is the electric
field profile E(x) for larger or smaller bias voltages?

2 Solution

We consider only 1-dimensional (x) dependence to the doping densities, and take coordinate
x to run from the p-side to the n-side, with the n-side contact at potential V > 0 and the
p-side contact at “ground”.10 In this convention the internal electric field is negative.

The one-dimensional electric field inside the device obeys Poisson’s equation,

∇ · E =
dE

dx
=

ρ(x)

Kε0
, (3)

where K is the (relative) dielectric constant (K = 11.67 for silicon).11 The semiconductor
extends from x1 to x2, with the p-n junction at x0. The depletion region extends from xp to
xn where x1 ≤ xp < x0 and x0 < xn ≤ x2. Integrating eq. (3) once, noting that the electric
field is zero outside the depletion region, we obtain

E(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (x1 < x < xp),∫ x

xp

ρ(x′)
Kε0

dx′ (xp < x < xn),

0 (xn < x < x2).

(4)

Integrating eq. (4) over the whole device, and integrating by parts, we find

V = V (x2) − V (x0) = V (x2) = −
∫ x2

x1

E(x) dx = −
∫ xn

xp

dx

∫ x

xp

ρ(x′)
Kε0

dx′

= −xn

∫ xn

xp

ρ(x)

Kε0
dx +

∫ xn

xp

xρ(x)

Kε0
dx =

∫ xn

xp

xρ(x)

Kε0
dx, (5)

noting that charge conservation implies that∫ xn

xp

ρ(x) dx = 0. (6)

For a specified reverse-bias voltage V , eqs. (5)-(6) determine the edges xp and xn of the
depletion region, after which the internal electric-field distribution can be computed using
eq. (4).

9The highest electric fields, which occur close to the p-n junction may be sufficient that the drifting
ionization electrons initiate Townsend avalanches. In this case it would be desirable to deplete the p-side of
the junction as fully as possible.

10Particle detectors are typically operated with the n-side contact at “ground” and the p-side contact at
negative voltage.

11The relative dielectric constant is affected by the doping density N , but this effect is significant only
for N > 1017/cm3 [12].
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The highest voltage for which this model can apply is such that either xp = x0 or xn = x2.
In practice, breakdown of the semiconductor under the high internal electric field occurs as
voltages lower than this maximum, and we thereby avoid having to “fix” to model to apply at
higher voltages. For p-n junctions used as particle detectors, with relatively thick depletion
layers, the breakdown mechanism is Townsend avalanches (which avalanches are desirable if
they don’t lead to breakdown).

2.1 Constant Doping Densities

In the idealized case of constant doping densities, Np = Nd and Nn = Nd, eqs. (4)-(6) can
be evaluated analytically.

Take the p-n junction to be at x0 = 0. Then, eq. (6) tells us that

− xpNp = xnNn, (7)

and eq. (5) becomes

V =
e

2Kε0

(x2
pNp + x2

nNn). (8)

Hence, the depletion edges are given by

xp = −
√

2Kε0V

e

Nn

Np(Np + Nn)
, xn =

√
2Kε0V

e

Np

Nn(Np + Nn)
, (9)

the width w of the depletion region is

w = xn − xp =

√
2Kε0V

e

NpNn

Np + Nn

. (10)

The electric-field profile is triangular, with nonzero, negative values between xp and xn. The
peak (negative) electric field is at the p-n junction, where

|Emax| =
Nnxn

Kε0
=

√
2V

eKε0

NpNn

Np + Nn
. (11)

2.1.1 Junction Capacitance

As the reverse-bias voltage is raised from 0 to V , electric charge,

Q = eNnxnA = −eNpxpA, (12)

flows through the external circuit as the charge carriers are swept out of the enlarging
depletion region (leaving total charge ±Q in the n- and p-sides of the depletion region). The
bias voltage (8) can also be written as

V =
Q(xn − xp)

Kε0A
=

Qw

Kε0A
≡ Q

Cjunction
, (13)
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where the junction capacitance,

C =
Kε0A

w
, (14)

is the same as that of a parallel-plate capacitor of width equal to the depletion width w
(even though the charge ±Q does not reside on the edge surfaces of the depletion region but
within its volume).

If the bias voltage is applied through a series resistor RB, the time constant for changes
in the bias voltage is RBCjunction.

When the device detects an optical photon via creation of a photoelectron at the top sur-
face of the p-layer, that photoelectron drifts towards the junction and generates an avalanche
of electron-hole pairs, most of whose charge is produced close to the junction, over a distance
d � w. As the electrons and holes of the avalanche separated under the influence of the
internal electric field, their drift velocity depends on the local field strength as shown in the
figures below (from [13]). These drift velocities are much higher than those of conduction
electrons in metals; the electron drift velocity in Si “saturates” at ve ≈ 107 cm/s = 0.1 μm/ps
for fields larger than 104 V/cm.12 The electron-hole charge separation has time scale d/ve,
which is a few tens of ps for an avalanche from a single photoelectron.

As the electrons and holes of the avalanche separate, the resulting electric field propagates
away from the junction at speed c/K, and induces charge on the top and bottom surfaces

12Fits to the electron and hole drift velocities at room temperature have been given in [14],
v = μ0E/[1 + N/(N/S + Nref) + (E/A)2/(e/A + F ) + (E/B)2 ]1/2, where E is the electric field strength in
V/cm, N is the doping density per cm3, and for electrons, μ0 = 1400 cm2/V-s, Nref = 3×1016/cm3, S = 350,
A = 3500 V/cm, F = 8.8, and B = 7400 V/cm, while for holes, μ0 = 480 cm2/V-s, Nref = 4 × 1016/cm3,
S = 81, A = 6100 V/cm, F = 1.6, and B = 2500 V/cm. For comparison of the fits with data, see
http://physics.princeton.edu/~mcdonald/LHC/Lu/ElectronVelocity_k.xlsx
http://physics.princeton.edu/~mcdonald/LHC/Lu/HoleVelocity_k.xlsx
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of the APD. The avalanche acts as a kind of current source for this induced charge, which
charges the APD capacitance on the time scale d/ve, i.e., over a few tens of ps. The voltage
on the APD capacitance reaches Vmax = Ge/CAPD, where G is the gain of the avalanche,
over a rise time of d/ve.

If this voltage is observed via a load resistor RL, the time constant RLCAPD does not
affect the rise time of the observed voltage provided RLCAPD � d/ve, but rather this time
constant governs the exponential discharge of the APD capacitance, i.e., it affects the fall
time of the voltage signal.

Additional details of the APD readout circuitry are discussed in the Appendices.

2.2 Spatially Varying Doping Densities

2.2.1 Junction Capacitance

When doping densities Np and Nn are functions of spatial coordinate x there is in general
no closed-form expression for the dependence of the depletion width, w = xn − xp, on bias
voltage V . However, from eq. (5) we see that a change δV in the bias voltage results in a
flow of charge δQ ≈ ρ(xn)A dxn = −ρ(xp)A dxp off of the device as related by

δV ≈ xnρ(xn) dxn

Kε0
− xpρ(xp) dxp

Kε0
=

δQ(xn − xp)

Kε0A
=

δQw

Kε0A
=

δQ

Cjunction
. (15)

Hence, the junction capacitance, Cjunction = Kε0A/w, again governs the time constant for
changes in the bias voltage.

2.2.2 Example: an Avalanche Photodiode

As an example of a p-n junction in which the doping densities vary with position we consider
the 8 × 8 mm2 avalanche photodiode described in [15]. The junction is 300 μm thick, with
w = 60 μm of deep-diffused p-doping on a substrate with uniform n-doping. The doping
densities are illustrated on the left figure below.

The interior electric field is estimated via the simplified model of eq. (4) by beginning
the integration at xp = −10, −20, −30, −40, and −50 μm, leading to the electric-field
distributions shown in the right figure above. The reverse-bias voltage across the junction
is obtained by integration of the electric field. Because of very large p-doping density near
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x = −60 μm, moving the p-side depletion edge to slightly less than −50 μm results in the
n-side becoming completely depleted, at around 5000 V bias voltage. In practice, internal
breakdown limits the voltage in this device to about 1900 V (and the peak electric field
magnitude to ≈ 2 × 105 V/cm).

For bias voltage of 1700 V, the width of the depletion region (where E < 0 in the above
right figure) is w ≈ 150 μn, and the nominal device capacitance is

CAPD = Cjunction =
Kε0A

w
=

11.67 · 8.85 × 10−12 · 64 × 10−6

150 × 10−6
= 44 pf. (16)

Studies (G. Atoian, private communication) of the 8 × 8 mm2 APD, using a Ru106 β-source
showed a 90-10 fall time of 7.2 ns = 2.2RLCAPD.13 For the preamp used, RL = 50 Ω, so we
infer that CAPD = 55 pf, compared to 44 pf according to eq. (16).14

In the Appendices below we will use CAPD = 60 pf for the 8 × 8 mm2 APD.

13Because the observed pulse was negative, the trailing edge was rising, and what we call the fall time
was reported as the rise time by the oscilloscope analysis package.

14This discrepancy cannot be attributed to the frequency dependence of the relative dielectric constant
K of silicon, which remains near 10 up to 1 GHz frequency.
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A Gain in an Avalanche Photodiode

A.1 McIntyre’s Gain Model

Relatively large currents were observed in reverse-biased Si and Ge p-n junctions when
bombarded by α-particles by McKay and McAfee in 1953 [17], which was interpreted as the
result of Townsend avalanches in the high-field region near the junction, initiated by electrons
(and holes!) generated by impact ionization. An analysis of the gain (multiplication factor)
in this process was given by Miller in 1955 [20], based on the Townsend (impact ionization)
coefficients α(E) and β(E) for electrons and holes, respectively. That is, ne(x) electrons at
position x (perpendicular to the junction, parallel to the electric field E) become “multiplied”
according to

ne(x + dx) = ne(x)α(E(x)) dx, (17)

after traversing distance dx opposite to the direction of the field E.15 Of course, each impact
ionization creates an electron-hole pair, so the holes are “multiplied” also. Similarly, nh(x)
holes at position x become “multiplied” (to

nh(x − dx) = nh(x)α(E(x)) (−dx), (18)

after traversing distance dx in the direction of the field E (with an equal number of holes
created as well).

15Conventions differ as to whether the electric field E is in the positive or negative x-direction. Here, we
suppose that electrons moves in the positive x-direction, and that E points in the negative x-direction.
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If the junction extends from xp < 0 to xn > 0, and an electron-hole pair is somehow
created at position x inside the junction, as the electron drifts to x = xn and the holes drifts
to x = xp, the number of secondary electron-hole pairs created by impact ionization is

N(x) =

∫ xn

x

α(x′) dx′ +
∫ xp

x

β(x′) (−dx′) =

∫ xn

x

α(x′) dx′ +
∫ x

xp

β(x′) dx′. (19)

However, if a (secondary) electron-hole pair is generated at position x′, as the new electron
and hole drift to the ends of the junction, additional (tertiary) electron-hole pairs are created.

We seek the total number M(x) of electron-hole pairs in the junction associated with an
initial pair at position x. Then, M(x′)α(x′) dx′ is the total number of electron-hole pairs
created somewhere in the junction due to the creation of α(x′) dx′ secondary pairs in the
interval dx′ with x′ > x, and similarly M(x′)β(x′) dx′ is the total number of electron-hole
pairs created somewhere in the junction due to the creation of β(x′) dx′ secondary pair in
the interval dx′ with x′ < x. Altogether, the total number of electron-hole pairs somewhere
in the junction associated with the initial pair at x is given by

M(x) = 1 +

∫ xn

x

M(x′)α(x′) dx′ +
∫ x

xp

Mx β(x′) dx′, (20)

as first deduced by McIntyre (1966) [18].16

The integral equation (20) was cleverly solved in [18] by first taking the derivative,17

dM(x)

dx
= −M(x) [α(x) − β(x)], (21)

which has the formal solution

M(x) = M(xp) e
− ∫ x

xp
(α−β)dx′

= M(xn) e
∫ xn
x (α−β) dx′

. (22)

Using eq. (22) in eq. (20) for x = xp (and also for x = xn), we find

M(xp) =
1

1 − ∫ xn

xp
dx′ α e

−∫ x′
xp

(α−β) dx′′
, M(xn) =

1

1 − ∫ xn

xp
dx′ β e

∫ xn
x′ (α−β)dx′′ , (23)

and using these forms in eq. (22) we obtain the gain (multiplication factor) M(x) for an
electron-hole pair somehow created at x,

M(x) =
e
− ∫ x

xp
(α−β) dx′

1 − ∫ xn

xp
dx′ αe

− ∫ x′
xp

(α−β)dx′′
=

e
∫ xn
x

(α−β)dx′

1 − ∫ xn

xp
dx′ β e

∫ xn
x′ (α−β) dx′′ . (24)

If either α or β is zero there is no tertiary production of electron-hole pairs, and eq. (24)

simplifies to M(x)β=0 = e
∫ xn
x

α dx′
and M(x)α=0 = e

∫ x
xp

β dx′
, as expected.

16Earlier discussions considered only M(xn) of eq. (23): McKay [19] assumed that α = β, while Miller
[20] supposed they we not equal.

17When considering currents in the junction rather than individual electrons and holes, eq. (21) is often
interpreted as describing the spatial variation of the currents. See, for example, [21], p. A768.
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When both α and β are nonzero (as holds generally) and large (as occurs for high electric
fields), it is possible that the tertiary production of electron hole pairs proceeds without
limit. In practice, if the number of electron-hole pairs becomes very large, they modify the
electric field inside the junction, which “breaks down”.

The model gives an indication of this in that M(x) diverges as either
∫ xn

xp
dx′ α e

− ∫ x′
xp

(α−β) dx′′

or
∫ xn

xp
dx′ β e

∫ xn
x′ (α−β) dx′′

approaches 1 (and becomes meaningless for larger values of these

integrals).

For example, if α = β, and the electric field is uniform across the junction of width w = xn − xp, then
M → ∞ when αw = 1. That is, if a single secondary electron-hole pair is generated in the junction, this
leads to a single tertiary pair, which leads to a single quaternary pair, etc., and the gain diverges.

As will be reviewed in Appendix A.2, in silicon β � α. If we suppose that β = kα with k � 1, and that
the electric field is uniform, then the gain diverges when αw ≈ − ln k = ln(α/β) = a few.

In practice, the junction becomes unstable well before the gain becomes infinite. We conjecture that a
“rule of thumb” is that the junction becomes unstable when the gain M(xp) becomes slightly larger than
α/β.

The model of McIntyre has been elaborated upon in various ways, by McIntyre himself
[22, 23, 24], and by others (see, for example, [25]).

A.2 α and β

B Current Pulse in an Avalanche Photodiode

An equivalent circuit for an avalanche photodiode (APD), when connected to a load such as
a preamp with input impedance Rload, is shown below.

The avalanche in the junction region is represent as a current source I(t) with a small
series resistance RS. The junction capacitance discussed in sec. 2.1.1 is indicated as CAPD.
The junction is also shown as a diode (which is not active when reverse biased). There also
exists a large parallel resistance RP , which has little effect on the short pulses considered
here.

B.1 Single Photoelectron

If a single optical photon is incident on the top surface of the avalanche photodiode and a
photoelectron is generated, the latter drifts towards the junction and eventually creates an
avalanche. The extent of the avalanche is roughly that of the junction, i.e., a few microns.
The velocity of electrons (and holes) near the junction, where the electric field strength
is about 104 V/cm for typical operation, is “saturated” with values closed to 107 cm/s =
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0.1 μm/ps. Hence, the avalanche lasts a few tens of ps, which is the characteristic time scale
of the current pulse (inside the avalanche photodiode) from a single photoelectron.

On this short time scale, the impedance of the capacitance CAPD is much less than
Rload, so the immediate response of the circuit is that the capacitor charges up to voltage
V = Q/CAPD, where Q = Ge with G being the gain of the APD and e the charge of an
electron. The voltage waveform for the load resistor has a rise time of a few tens of ps, and
a fall time with time constant RloadCAPD as the capacitor discharges.

B.2 Response to a Penetrating Charged Particle

If a high-energy charged particle passes through the APD, it creates a trail of electron-hole
pairs. A so-called minimum-ionizing charged particle creates about Nmin = 100 electron-
holes pairs per micron.

For the APD considered in sec. 2.2.2, about 6000 electron-holes pairs are created by a
minimum-ionizing particle that passes through the 60-μm-thick p-side. However, the electric
field near the top of the APD is lower than 104 V/cm, such that the initial drift velocity of
ionization electrons in this region is low, and they do not contribute to the “prompt” signal.
For such an APD biased around 2000 V, we suppose that the effective thickness of the APD
for its “prompt” signal is deff ≈ 40 μm, so that some Nmindeff = 4000 ionization electrons
move at the saturated drift velocity towards the junction, arriving of an interval about 400
ps long.

The corresponding current pulse I(t) is approximately flat for time interval Δ1 ≈ 400 ps
(with initial and final transients lasting a few tens of ps). That is, the current pulse is
approximately

I1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (t < 0),

I0 (0 < t < Δ1),

0 (t > Δ1),

(25)

taking the avalanche to start at time t = 0.

If the discharge time constant RloadCAPD is large compared to 400 ps, the initial effect
of the current pulse is again to charge the capacitor to voltage Q/CAPD where Q = I0Δ1 =
GNmindeff , after which the charge flows off the capacitor through the load resistor. However,
for small Rload, some of the charge flows off the capacitor through the resistor before its
voltage reaches Q/CAPD. In either case, the voltage rise time is 400 ps, although if the load
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resistor represents an amplifier with a finite bandwidth the observed rise time will be slower,
as will be illustrated in sec. B.3.

B.3 Response to a Pulse of Infrared Photons

Infrared photons with wavelength around 1 μm have an absorption length greater than the
thickness of the p-side of the avalanche photodiode, so they can create photoelectrons at
any depth in the p-layer with approximate the same probability. Of course, a single infrared
photon can create only one photoelectron, for which the avalanche current pulse would be
the same as that discussed in sec. A.1. However, a beam of infrared photons of sufficient
intensity can create a track of photoelectron, closely approximating the effect of a charged
particle. Here, we consider a beam if infrared photons that has width Δγ in time, for which
the intensity vs. time can be written

Nγ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (t < 0),

N0 (0 < t < Δγ),

0 (t > Δγ).

(26)

The avalanche current pulse from such a beam of photons is the convolution

Iγ(t) =

∫ t

−∞
dt′ Nγ(t

′)I1(t − t′) = N0

∫ min(t,Δγ)

0

dt′ I1(t − t′) = N0I0

∫ min(t,Δγ)

max(0,t−Δ1)

dt′. (27)

The result is slightly different for cases Δγ < Δ1 and Δ1 < Δγ, but can be written in a
single form if we define Δlo = min(Δγ, Δ1) and Δhi = max(Δγ, Δ1)

Iγ(t) = N0I0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (t < 0),

t (0 < t < Δlo),

Δlo (Δlo < t < Δhi),

Δlo + Δhi − t (Δhi < t < Δlo + Δhi),

0 (t > Δlo + Δhi = Δγ + Δ1).

(28)
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C Load Voltage via Laplace Transforms

We can use the method of Laplace transforms to solve for the load voltage, VL = ILRL, for
various hypothesis as to the current pulse I(t) from an avalanche at the junction. We will
ignore the large parallel resistance RP (and the junction diode, which plays no role for a
reverse-biased APD). Then, the voltage and current circuit associated with the equivalent
circuit shown on p. 6 are

VR = ILRL =
QC

C
, IC = İLRLC, I = IC + IL = IL + İLRLC. (29)

Writing that Laplace transform of a function F (t) as

L(F ) = f(s) =

∫ ∞

0

e−stF (t) dt, (30)

and noting that the Laplace transform of the time derivative Ḟ is

L(Ḟ ) =

∫ ∞

0

e−stḞ (t) dt = −F (0) + s

∫ ∞

0

e−stF (t) dt = sf − F (0), (31)

the Laplace transform of the last of eq. (29) is

i = iL + iLsRLC, vL = iLRL =
iRL

1 + sRLC
, (32)

where we suppose that t = 0 is the time at which the current pulse begins, such that I(0) = 0.
Then, the load voltage is the inverse Laplace transform of eq. (32),

VL = L−1(vL) = L−1

(
iRL

1 + sRLC

)
. (33)

As an example, suppose the current pulse is a delta function I(t) = Q0 δ(t), where
Q0 =

∫
I dt is the total charge in the pulse. Then, i =

∫
e−stQ0δ(t) dt = Q0, and

VL = Q0RLL−1

(
1

1 + sRLC

)
=

Q0

C
e−t/RLC = V0 e−t/RLC, (34)

where V0 = Q0/C is the voltage across the capacitor at the end of the current pulse, at which
time charge Q0 is on the capacitor.18 This is, of course, the usual result for the voltage across
a resistor in parallel with a capacitor.

C.1 Effect of Adding a Series Capacitance

The fall time, but not the peak voltage, can be lowered by adding a capacitor in series with
the load resistor.

18Note that for F (t) = e−t/τ , its Laplace transform is f =
∫ ∞
0

e−stet/τ dt = τ/(1 + sτ ).
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In this case the circuit equations (29) become (again neglecting the large parallel resis-
tance RP ),

VR = ILRL +
Q′

C ′ =
QC

C
, IC = İLRLC + IL

C

C ′ , I = IC + IL = IL
C + C ′

C ′ + İLRLC. (35)

The Laplace transformed equations are,

i = iL
C

Ceff
+ iLsRLC, Ceff =

CC ′

C + C ′ , vL = iLRL =
Ceff

C

iRL

1 + sRLCeff
, (36)

which have the same form of dependence on s as eq. (33).
For the example of a delta-function current pulse, where i = Q0, the load voltage can be

transcribed from eq. (34) as

VL(t > 0) =
Ceff

C

Q0

Ceff
e−t/RCeff =

Q0

C
e−t/RCeff . (37)

C.2 Effect of Load Bandwidth of a Voltage Amplifier

The load resistor may represent the input impedance of a voltage amplifier that has a limited
bandwidth.

We can approximate the bandwidth limitation as due to low-pass, RC filter, as shown
below, where all the input current flows onto the filter capacitor Cb after passing through
the filter resistor Rb.

The circuit equations are

Vin = IinRb +
QC

Cb
, V̇in = İinRb +

Iin

Cb
, Vout =

QC

Cb
, V̇out =

Iin

Cb
. (38)

The Laplace transformed equations are

svin = siinRb +
iin
Cb

, iin =
svinCb

1 + sRbCb
, svout =

iin
Cb

, vout =
vin

1 + sRbCb
≡ vin

1 + sτ b
. (39)
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The factor T (s) = 1/(1 + sτ b), where τ b ≡ RbCb, is called the transfer function of the filter,
whose bandwidth is defined as 1/2πτ b.

19,20

If the load resistor RL represents the input impedance of an amplifier of voltage gain G
and bandwidth ν = 1/2πτ b (in ordinary frequency), the output voltage from an APD with
added series capacitance C ′ has Laplace transform

vout = G
vin

1 + sτ b

= G
Ceff

C

iRL

1 + sRLCeff

1

1 + sτ b

with Ceff =
CC ′

C + C ′ . (42)

For example, in case of a delta-function current pulse with Laplace transform i = Q0,
the output voltage follows from the inverse Laplace transform of eq. (42) as

Vout = GQ0
RLCeff

C

e−t/RLCeff − e−t/τb

RLCeff − τ b
with Ceff =

CC ′

C + C ′ , (43)

assuming that RLCeff > τ b, i.e., that the amplifier bandwidth is large.
The figure below illustrates the output voltage for C = 60 pf, C ′ = 38 pf, Ceff = 23 pf,

RL = 50 Ω, and amplifier bandwidths of ∞, 1 GHz (τ b = 160 ps) and 500 MHz (τ b =
320 ps).21

19Filters with more components can have a sharper frequency cutoff. For example, a 3rd-order Butter-
worth filter has the transfer function 1/(1 + sτ )(1 + sτ + s2τ2).

20A useful result is that a Laplace transform f(s) of a function F (t) that is zero to t < 0 is also its Fourier
integral transform fω, if we take s = jω, where j =

√−1 in the electrical-engineering convention,

f(jω) =
∫ ∞

0

e−jωtF (t) dt =
∫ ∞

−∞
e−jωtF (t) dt = fω . (40)

The gain G(ω) of the filter (a number less than 1) as a function of angular frequency ω is taken to be the
magnitude of the output voltage for unit input voltage at that frequency. That is,

G(ω) = |T (jω)| =
√

T (jω)T �(jω) =
√

T (jω)T (−jω) =

√
1

1 + ω2τ2
b

(41)

The cutoff (angular) frequency of the filter is taken to be ωc = 1/τ b, such that τ b = 1/2πνc where νc = 2πωc

is the ordinary cutoff frequency. For example, with νc = 500 MHz, τF = 1/π ns = 318 ps.
As the cutoff frequency the output voltage is reduced by 1/sqrt2, so the output power is 1/2 of the input

power. As such, νc is called the 3-dB cutoff frequency, and also called the bandwidth of the filter.
21In this figure, and that on p. 13, the total charge in the pulse is Q = Nmindeff = 100 · 40 = 4000

electrons, multiplied by APD gain of GAPD = 200 and by readout amplifier gain of Gamp = 316 (power gain
of 50 dB).
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The 10-90 rise times are roughly 2τ b. The peak voltage in this example drops from 0.68
V for infinite bandwidth to 0.42 V for 500-MHz bandwidth.

C.3 Penetrating Charged Particle

As in sec. A.2, we consider that case of a single charged particle that passes through the
APD, which generates a current pulse I1(t) at the junction given by eq. (25). The Laplace
transform of this current pulse is

L(I1) = i1 =

∫ Δ1

0

e−stI0 dt =
I0

s
(1 − e−sΔ1) =

Q0

sΔ1

(1 − e−sΔ1), (44)

where Q0 = I0Δ1 is the total charge in the current pulse. The load voltage (33) can be
evaluated analytically using the Wolfram Alpha Inverse Laplace Transform Calculator,

VL(t > 0) =
Q0RL

Δ1
L−1

(
1 − e−sΔ1

s(1 + sRLC)

)
=

Q0RL

Δ1

(
1 − e−t/RLC + θ(t − Δ1)(e

(Δ1−t)/RLC − 1)
)
,(45)

where θ(t) = 0 for t < 0 and 1 for t > 0. That is,

VL(t > 0) =
Q0RL

Δ1

⎧⎨
⎩ 1 − e−t/RLC (t < Δ1),

e−t/RLC(eΔ1/RLC − 1) (t > Δ1).
(46)

The load voltage rises to a maximum at time t = Δ1, after which it decays exponentially
with time constant RLC .

The full rise time of the waveform is just Δ1 (independent of RLC), so the 90-10 rise time
is about 0.8Δ1 when Δ1 � RLC (so about 320 ps for the APD considered in sec. 2.2.2),22

while the 90-10 fall time is 2.2RLC (as usual for exponential decay).

22When Δ1 > RLC the full rise time is still Δ1, but the rising waveform 1 − e−t/RLC would perhaps be
better characterized as having time constant RLC.
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The peak voltage across the load is

Vmax =
Q0RL

Δ1

(1 − e−Δ1/RLC) ≈ Q0

C
, (47)

where the approximation holds when Δ1 � RLC . Thus, the peak voltage is unaffected by
the load resistance, but varies inversely with the (effective) capacitance of the APD.

If the load resistor RL represents the input impedance of an amplifier of voltage gain G
and bandwidth ν = 1/2πτ b (in ordinary frequency), the output voltage from an APD with
added series capacitance C ′, the output voltage is

Vout = G
Ceff

C

Q0RL

Δ1
L−1

(
1 − e−sΔ1

s(1 + sRLCeff)(1 + sτ b)

)

= G
Ceff

C

Q0RL

Δ1

[
1 +

τ e−t/τb − RLCeff e−t/RLCeff

RLCeff − τ b

+θ(t − Δ1)

(
RLCeff e(Δ1−t)/RLCeff − τ b e(Δ1−t)/τb

RLCeff − τ b

− 1

)]
. (48)

That is,

VL(t > 0) = G
Ceff

CΔ1

Q0RL

RLCeff − τ b

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RLCeff(1 − e−t/RLCeff) − τ b(1 − e−t/τb) (t < Δ1),

RLCeff e−t/RLCeff(eΔ1/RLCeff − 1)

−τ b e−t/τF (eΔ1/τb − 1) (t > Δ1),

(49)

The figure below illustrates the output voltage for C = 60 pf, C ′ = 38 pf, Ceff = 23 pf,
RL = 50 Ω, Δ1 = 400 ps, and amplifier bandwidths of ∞, 1 GHz (τ b = 160 ps) and 500 MHz
(τ b = 320 ps).
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The 10-90 rise times are only slightly larger than the width Δ1 of the (rectangular)
avalanche current pulse, and the peak voltages are only slightly less than for a delta-function
pulse of the same total charge (p. 12).

However, if the load resistor is only 5 Ω, then the peak voltage is considerably reduced,
as shown in the figure below. As such, there is an optimum value of the load resistor for
best signal to noise, when the limiting noise is the Johnson (thermal) noise of the resistor.

D Time Resolution

A time can be assigned to the output waveform from the APD as the moment when the
leading edge of that waveform reaches some specified voltage (or some specified fraction of
the maximum voltage Vmax. In the approximation that the leading edge of the waveform is
a straight line of slope Vmax/Δ, where Δ ≈ d/ve is the full rise time, the rms time resolution
σt can be related to the rms noise voltage σV according to

σt =
Δ

Vmax
σV ≈ d

ve

CAPD

Q
σV ≈ d

ve

Kε0A

w

1

GAPDGampNmindeff
σV ∝ σV

d
, (50)

under the (possibly näıve) assumption that d ∝ deff ∝ w.
As noted in Appendices A and B, the rise time Δ of the APD waveform is essentially

the width of the avalanche current pulse, which is roughly d/ve where d is the thickness
of the depletion region (p-side) when the electric field is high enough (> 104 V/cm) that
the electron drift velocity is saturated, with value ve = 0.1 μm/ps. The value of d can be
changed by changing the thickness of the p-side of the APD, so eq. (50) suggests that it is
better if the p-side depletion region were thinner.
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Über den Einfluss von Strukturwirkungen, besonders der Thomsonschen Bildkraft, auf
die Elektronenemission der Metalle, Phys. Z. 15, 872 (1914),
http://physics.princeton.edu/~mcdonald/examples/detectors/schottky_pz_15_872_14.pdf

Halbleitertheorie der Sperrschicht, Naturw. 50, 843 (1938),
http://physics.princeton.edu/~mcdonald/examples/detectors/schottky_naturwissenschaften_52_843_38.pdf

[5] H.A. Bethe, Theory of the boundary layer of crystal rectifiers, MIT Rad. Lab. Rep.
43-12 (Nov. 23, 1942).
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