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1 Problem

Deduce the far-zone electromagnetic fields and the radiation pattern of a loop antenna in
the form of a parallelogram, as shown in Fig. 1, when a spatially uniform current of angular
frequency ω flows around the loop.

Figure 1: A loop antenna lies in the x-y plane and has the form of a par-
allelogram of edges a and b with angle α between adjacent sides. Current
I = I0e

−iωt flows uniformly around the loop, in which case the location of the
feed makes no difference to the radiation pattern.

1.1 Solution

Rhombic antennas, which are a special case of pallaleogram loop antennas, were the subject
of considerable discussion in the 1930’s. See, for example, [1].

If the current distribution in an antenna is known, there is an “exact” procedure to
calculate the far-zone electromagnetic fields and the corresponding radiation pattern.1

When the currents oscillate with angular frequency ω, we can write the current density
J as

J(r, t) = J(r)e−iωt. (1)

From this, we can calculate the spatial Fourier transform

Jk =

∫
J(r)eik·r dVol. (2)

1While this result is “well-known” it is not often stated crisply in texts on electrodynamics. A reasonably
compact statement of the procedure can be found in [2].
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The far-zone electromagnetic fields are then given (in Gaussian units) by

B = ik
ei(kr−ωt)

cr
k̂ × Jk, E = B × k̂, (3)

where we now interpret k as the wave vector of magnitude ω/c, where c is the speed of
light, whose direction points from the antenna to the receiver. The time-averaged radiation
pattern is then

dP

dΩ
=
cr2

8π
|B|2 . (4)

For an observer at angles (θ, φ) with respect to the z axis (in a spherical coordinate
system with origin at the antenna), the unit wave vector has rectangular components

k̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ. (5)

In the present problem, the current flows in the x-y plane, so the current density J and
its Fourier transform Jk have no z component. Hence,

k̂× Jk = −Jk,y cos θ x̂ + Jk,x cos θ ŷ + (Jk,y cos φ− Jk,x sinφ) sin θ ẑ

= − Jk,y cos θ (sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂)

+ Jk,x cos θ (sin θ sinφ r̂ + cos θ sinφ θ̂ + cos φ φ̂)

+ (Jk,y cos φ− Jk,x sinφ) sin θ(cos θ r̂ − sin θ θ̂)

= (Jk,x sinφ− Jk,y cos φ) θ̂ + (Jk,x cos φ+ Jk,y sinφ) cos θ φ̂. (6)

Thus,

Er = Br = k̂ · B = 0, (7)

Eθ = Bφ = ik
ei(kr−ωt)

cr
(Jk,x cosφ+ Jk,y sin φ) cos θ (8)

Eφ = −Bθ = −ik e
i(kr−ωt)

cr
(Jk,x sin φ− Jk,y cosφ), (9)

and the radiation pattern is given by

dP

dΩ
=

k2

8πc

[|Jk,x|2 (sin2 φ+ cos2 φ cos2 θ) + |Jk,y|2 (cos2 φ+ sin2 φ cos2 θ)

− 2Re(Jk,xJ
�
k,y)(1 − cos θ) sinφ cos φ

]
. (10)

Clearly, eqs. (7)-(10) apply to any antenna whose currents flow only in the x-y plane.
It remains to evaluate the Fourier transform Jk. Assuming that the antenna is made of

a conductor (wire) whose diameter is small compared to the wavelength, we can express the
Fourier transform as a line integral around the loop antenna,

Jk =

∫
J(r)eik·r dVol = I0

∮
dl eik·r, (11)
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where dl is the differential line element tangent to the conductor. For the case of the
parallelogram antenna, we break up the line integral (11) into four integrals along the four
sides of the antenna, using labels as shown in Fig. 1. Then,

dl1 = dl x̂, (12)

dl2 = dl(cosα x̂ + sinα ŷ), (13)

dl3 = −dl x̂ = −dl1, (14)

dl4 = dl(cosα x̂ + sinα ŷ) = −dl2. (15)

The position vector r on the four segments of the antenna can be written

r1 = l x̂ (0 ≤ l ≤ a), (16)

r2 = (a + l cosα) x̂ + l sinα ŷ (0 ≤ l ≤ b), (17)

r3 = (a + b cosα− l) x̂ + b sinα ŷ (0 ≤ l ≤ a), (18)

r4 = (b− l) cosα x̂ + (b− l) sinα ŷ (0 ≤ l ≤ b). (19)

Hence,

k · r1 = kl sin θ cos φ, (20)

k · r2 = k[(a+ l cosα) sin θ cosφ+ l sinα sin θ sin φ]

= ka sin θ cos φ+ kl sin θ cos(α − φ), (21)

k · r3 = k[(a+ b cosα − l) sin θ cos φ+ b sinα sin θ sinφ]

= ka sin θ cos φ+ kb sin θ cos(α− φ) − kl sin θ cos φ, (22)

k · r4 = k[(b− l) cosα sin θ cos φ+ (b− l) sinα sin θ sinφ]

= k(b− l) sin θ cos(α− φ). (23)

With these forms, the Fourier transform (11) becomes

Jk = I0 x̂

∫ a

0

dl eikl sin θ cosφ + I0(cosα x̂ + sinα ŷ)eika sin θ cosφ

∫ b

0

dl eikl sin θ cos(α−φ)

− I0 x̂ eika sin θ cosφeikb sin θ cos(α−φ)

∫ a

0

dl e−ikl sin θ cosφ

− I0(cosα x̂ + sinα ŷ)eikb sin θ cos(α−φ)

∫ b

0

dl e−ikl sin θ cos(α−φ)

= 2I0 x̂ ei
ka
2

sin θ cosφ sin(ka
2

sin θ cosφ)

k sin θ cos φ

[
1 − eikb sin θ cos(α−φ)

]

+ 2I0(cosα x̂ + sinα ŷ)ei
kb
2

sin θ cos(α−φ)
sin(kb

2
sin θ cos(α− φ))

k sin θ cos(α − φ)

(
eika sin θ cosφ − 1

)

= 4iI0 sinα(− sinφ x̂ + cosφ ŷ) ei
ka
2

sin θ cosφei
kb
2

sin θ cos(α−φ)

sin(ka
2

sin θ cosφ) sin(kb
2

sin θ cos(α− φ))

k sin θ cosφ cos(α− φ)

= 4iI0 sinα φ̂ ei
ka
2

sin θ cosφei
kb
2

sin θ cos(α−φ)

sin(ka
2

sin θ cosφ) sin(kb
2

sin θ cos(α− φ))

k sin θ cosφ cos(α− φ)
. (24)
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That is, the Fourier transform Jk (which is proportional to the vector potential) has only an
azimuthal component in the present case.

The far-zone electromagnetic fields follow from eqs. (7)-(9),

Eθ = Bφ = 0, (25)

Eφ = −Bθ = −4I0 sinα
ei(kr−ωt)

cr
ei

ka
2

sin θ cosφei
kb
2

sin θ cos(α−φ)

sin(ka
2

sin θ cosφ) sin(kb
2

sin θ cos(α− φ))

sin θ cos φ cos(α− φ)
. (26)

The radiation is linearly polarized, parallel to the x-y plane.
The time-averaged radiation pattern for the general parallelogram loop antenna follows

from eq. (4),

dP

dΩ
=

2I2
0 sin2 α sin2(ka

2
sin θ cosφ) sin2(kb

2
sin θ cos(α − φ))

πc sin2 θ cos2 φ cos2(α − φ)
. (27)

For angles θ very near 0◦ or 180◦ the radiation pattern simplifies to

dP

dΩ
≈ k4I2

0(ab sinα)2 sin2 θ

8πc
=
ω4I2

0Area2 sin2 θ

8πc5
, (28)

which is the same as for a circular loop of the same area as the parallelogram. Of course,
the radiation is very weak for θ near 0◦ and 180◦.

While the denominator of eq. (27) also vanishes when φ = ±90◦ and α ± 90◦, the nu-
merator vanishes there also, such that the radiation pattern actually is nowhere divergent.
However, the radiation pattern has zeroes at other angles (θ, φ) such that ka sin θ cos φ = 2mπ
and kb sin θ cos φ = 2nπ, for integers m and n.

2 Examples

2.1 “Small” Loop

For a “small” loop, where ka � 1 and kb � 1 (i.e., a � λ and b � λ), the electric field
simplifies to

E = −φ̂ k2I0ab sinα
ei(kr−ωt)

cr
sin θ = −φ̂ m0ω

2 e
i(kr−ωt)

c2r
sin θ (“small” loop), (29)

where

m0 =
I0ab sinα

c
=
I0Area

c
(30)

is the magnetic moment of the current distribution. Thus, a “small” loop is completely
equivalent to a circular loop of the same area, which emits pure magnetic dipole radiation.
While we have shown this only for a parallelogram loop, it is “clearly” true for any small
planar loop, including a “fractal” loop antenna [3].
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The radiation pattern is
dP

dΩ
=
ω4I2

0Area2 sin2 θ

8πc5
. (31)

The time-averaged radiated power is the integral of this with respect to solid angle dΩ,

P =
ω4I2

0Area2

3c5
=

1

2
I2
0

32π4

3c

Area2

λ4 =
1

2
I2
0Rantenna, (32)

where

Rantenna =
32π4

3c

Area2

λ4 = 31, 170Ω
Area2

λ4 (33)

is the radiation resistance of the antenna, recalling that 1/c = 30Ω.

2.2 Rectangular Loop (α = 90◦)

dP

dΩ
=

8I2
0 sin2(ka

2
sin θ cos φ) sin2(kb

2
sin θ sinφ)

πc sin2 θ sin2 2φ
. (34)

2.3 Square Loop

Here, a = b. The radiation pattern in, say, the x-z plane (φ = 0) is

dP (φ = 0)

dΩ
=
k2a2I2

0 sin2(ka
2

sin θ)

2πc
. (35)

Of course, the pattern is the same in the y-z plane.
The radiation pattern for a square with a = 4.4λ is shown in the left side of Fig. 2. For

comparison, the right side of that figure shows the pattern for a circular loop whose diameter
is 5λ (see also sec. 2.4). As anticipated in our general discussion, these two radiation patterns
are only closely similar near the z (vertical) axis.

2.4 Circular Loop

For comparison, we briefly consider that case of a circular loop of radius a that carries
current I0e

−iωt. The loop lies in the x-y plane and is centered on the origin. Then the
current element is dl = adφ0 φ̂0 where φ0 is the azimuth to the current element; the phase
is k · r = ka sin θ cos(φ0 − φ) ≡ ka sin θ cosψ, so the Fourier transform is

Jk = aI0

∫ 2π

0

dφ0 φ̂0e
ika sin θ cos(φ0−φ) = aI0

∫ 2π

0

dφ0 (− sin φ0 x̂ + cos φ0 ŷ)eika sin θ cos(φ0−φ)

= aI0

∫ 2π

0

dψ (− sin φ x̂ + cos φ ŷ) cosψeika sin θ cosψ = −2πiaI0J1(ka sin θ) φ̂, (36)

where J1 is the Bessel function of order 1. The magnetic field is

B =
2πkaI0e

i(kr−ωt)

cr
J1(ka sin θ) θ̂. (37)
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Figure 2: Radiation patterns in the x-z planes for two loops antennas that
lie in the x-y plane. Left: square loop with edge = 4.4 λ. Right: circular loop
with diameter = 5 λ. From [4].

The time-averaged radiation pattern is

dP

dΩ
=
πk2a2I2

0

2c
J2

1 (ka sin θ). (38)

Since the Bessel function J1 is something like a damped sine wave, the radiation pattern is
stronger near the z axis than near the x-y plane, as shown in the right side of Fig. 2.

For a small loop, ka � 1, we have J1(ka sin θ) ≈ (ka/2) sin θ, so that

dP

dΩ
=
πk4a4I2

0

8c
sin2 θ =

2π5a4I2
0

λ4c
sin2 θ (small circular loop), (39)

and the total radiated power is

P =
1

2
I2
0

32π6

3c

a4

λ4 =
1

2
I2
0 306, 645Ω

a4

λ4 =
1

2
I2
0Rantenna (small circular loop), (40)

in agreement with sec. 2.1. To have, say, Rantenna = 50Ω, use a ≈ λ/9.
For a large loop, ka� 1, the total radiated power is given by2

P =
πk2a2I2

0

2c
2π

∫ π

0

J2
1 (ka sin θ) sin θ dθ =

π2k2a2I2
0

c

1

ka

∫ 2ka

0

J2(t) dt

≈ π2kaI2
0

c
=

1

2
I2
0

2π3

c

a

λ
=

1

2
I2
0 1, 860Ω

a

λ
(large circular loop). (41)

2Kraus [4] claims that the integral relation
∫ π

0
J2

1 (ka sin θ) sin θ dθ = (1/ka)
∫ 2ka

0
J2(t) dt is given some-

where in [5], but I haven’t been able to find it there. Schwinger [6] deduces this from Neumann’s integral
(p. 32 of [5]). Thanks to J. Castro for pointing this out.
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It is noteworthy that the integral of J2
1 (ka sin θ) varies as 1/ka, such that the radiation

resistance of a large circular loop varies only as a/λ, in contrast to a4/λ4 for a small loop.

2.5 “Large” Square Loop

If a ≈ b � λ, then the radiation pattern (27) has ka/π “lobes” as a function of θ. If
we average over these rapid variations in angle θ, the angular distribution is approximately
isotropic. Comparing with eq. (35), we see that

dP (φ = 0)

dΩ
≈ k2a2I2

0

4πc
. (42)

As the azimuthal angle φ is varied, the radiation pattern oscillates in a complicated man-
ner, as discussed briefly at the end of sec. 1. We estimate that the average effect of these
oscillations is to cut the radiated power in half again, so we write

〈
dP

dΩ

〉
≈ k2a2I2

0

8πc
. (43)

The time-averaged radiated power is approximately 4π times this, i.e.,

P ≈ k2a2I2
0

2c
=

1

2
I2
0

4π2

3c

a2

λ2 =
1

2
I2
0Rantenna, (44)

where

Rantenna =
4π2

3c

a2

λ2 = 395Ω
a2

λ2 (45)

is the radiation resistance. Since we have assumed that a � λ, the radiation resistance is
large.

Is it really correct that the radiation resistance of a large square loop of edge a varies as
a2/λ2 while that for a large circular loop of radius a varies as a/λ? If correct, this is because
the pattern for a square loop “bulges” out at the “equator” much more than does the pattern
for a circular loop. However, it could be that the averaging over aziumuthal angle φ does
not yield a factor 1/2 as claimed, but rather a much smaller factor 1/ka, which could bring
the result for a large square loop into better agreement with that for a large circular loop.

2.6 Folded Dipole

We take this to be a rectangular loop antenna with side b � λ. Then,

dP

dΩ
=
k2b2I2

0 sin2(ka
2

sin θ cosφ)

8πc cos2 φ
. (46)

If the current is uniform around the antenna, the radiation is very weak for small b, since the
radiation from the two long arms of the antenna very nearly cancels. Of more interest would
be the case when the current is nonuniform, such that the currents in the two long arms flow
in the same direction. For this, the antenna must be considered as a kind of resonant cavity
that is excited in a desirable mode, which possibility is beyond the scope of this note.
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