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1 Precision Estimates

Introduction

Physics is sometimes called an ‘exact’ science. But this does not mean that the numerical
uncertainties in measured quantities, or even in the laws of physics, are vanishingly small.
Rather, it reflects the empirical fact that with care one often can make measurements whose
uncertainties, or ‘errors’, are smaller than appear important.

In the Ph101 laboratory you will have the opportunity to make several measurements,
and likely in later years you will have the need to evaluate the merits of measurements made
by others. Typically a good understanding of the precision of the measurements is at least
as important as the measured value itself.

This Laboratory will use three types of measurements to illustrate procedures for estimat-
ing the precision (the optimist’s view) or the error (the pessimist’s view) of measurements.

1. The density of aluminum. This is an example of a quantity whose value could be
well determined with sufficient effort, but the limitations of the instruments lead to an
uncertainty in the measurement that is sometimes called measurement error.

2. The thickness of a dollar bill. Although the thickness of dollar bills may vary, the
thickness is so small that measurement uncertainty is significant here also.

3. Human reaction time. In this case the instruments are more precise than the variation
in repeated measurements of the quantity, which has an intrinsic uncertainty.

1.1 The Density of Aluminum

The Handbook of Chemistry and Physics (reference copy available in the Ph101 Laboratory)
lists the density of aluminum as 2.69 gm/cm3 on one page and as 2.70 gm/cm3 on another.
Possible interpretations are that the density of various batches of aluminum varies by 0.01
gm/cm3 due to impurities, or that 0.01 gm/cm3 is the uncertainty in the measurement of
the density.

Make your own determination of the density, ρ, of aluminum by measuring the volume
and mass of a sample block:

ρ =
M

V
=

M

L · W ·H , (1)

where L, W and H are the length, width and height, respectively, of the block. For each of
the four measured quantities you should make a simple estimate of the uncertainty in that
measurement. Labeling the uncertainty on M as σM , etc., then the error on the density
follows from the equation (16) of the Appendix as
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Measure the mass with either the digital or analog balances on the tables near the center
of the laboratory. A typical estimate of the uncertainty of a digital device would be the
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value of the least count – although this assumes the engineers have designed the device to
this standard. For an analog device such as a balance or ruler a typical estimate of the
uncertainty would be about 1/3 of the smallest gradation. See sec. 1.5.5 for a technical
comment on this.

However, if repeated measurements of a quantity give varying results, the uncertainty is
larger than the above estimate; the quantity being measured is uncertain. In this case you
should characterize the spread of your data by a ‘standard deviation’ as discussed in the
Appendix. Start with the simple approach of sec. 1.5.2 which is based on 3 measurements.

To measure lengths you can use meter sticks, rulers, vernier calipers or micrometers, in
order of decreasing range of lengths that can be measured. To minimize the measurement
uncertainty, use the device with the smallest gradations that also spans the length you wish
to measure. For example, use the micrometer to measure the smallest dimension of the
aluminum block.

Both the vernier caliper and the micrometer utilize the vernier technique to improve the
accuracy of the measurement. Be sure to master the use of a vernier during this laboratory.

The aluminum blocks may have a small conical hole drilled in them. If so, subtract the
volume of the hole from the volume of the block before applying eq. (1). You may omit an
error analysis of the volume of the cone, but compare Vhole/Vblock to σρ/ρ to estimate the
importance of the volume of the cone for the density measurement.

Is your measurement of the density ρ of aluminum within one or two times your error
estimate σρ of the book value 2.70? If not, you have probably made a mistake somewhere.
Check your arithmetic; recheck your measurements if necessary. One of the advantages
of performing the error analysis is the confidence it gives that your measurements are self
consistent when both measurements and errors appear reasonable; or conversely the clue it
gives you if the measured value varies from expectations by more than the error estimate.

Each person should take his or her own measurements on the aluminum block
and record them and the appropriate data analysis in their lab notebook before
proceeding.

1.2 Thickness of a Dollar Bill

In the following part of the lab you can use a dollar bill to estimate your reaction time. First,
measure the thickness of a dollar bill, and estimate the error on your measurement.

Since a dollar bill is so thin, it’s better to measure the thickness of a stack of n dollar
bills, then divide by n. In case you don’t have a thick wad of bills, fold a single bill several
times. Note that paper is highly compressible, so only the uncompressed thickness of a dollar
bill is well defined.

If t is the thickness of a bill and you fold it until there are n layers to measure, you will
measure thickness T = nt. If σT is your estimate of the uncertainty on the measurement of
total thickness T , then the corresponding uncertainty on t = T/n is σt = σT/n since there
is no uncertainty in the number n.

How many dollar bills would there be in a stack high enough to reach the moon, whose
distance is about 400,000 km? What is the uncertainty on your estimate?
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1.3 Human Reaction Time

1.3.1 Catching a Dollar Bill

A well-known challenge is to catch a dollar bill dropped by your partner, holding your thumb
and finger in line with the picture of George W. before your partner lets the bill go. Human
reaction time is such that very few people can catch the bill (without anticipating the release
by some clue). From the expression for the distance travelled by a falling object from rest,

y =
1

2
gt2, (3)

we infer that the human reaction time treact is longer than
√

2y/g where y is the half-length
of a dollar bill and g is the acceleration due to gravity.

Try the experiment, and record the numerical value of eq. (3) as a first estimate of treact

in your lab book.

1.3.2 Catching a Meter Stick

The principle of sec. 1.3.1 can be used to make a measurement of your reaction time.
Have your partner hold a meter stick from its upper end, using the plate attached to the

vertical rod on your lab bench to steady his/her hand. Place your thumb and finger in line
with some gradation near the bottom of the stick. Catch the stick when it is dropped and
record the distance through which it fell before you caught it. Use the analysis of sec. 1.3.1
to deduce your reaction time.

Repeat your measurement at least three times. Each person in your group should collect
data on his/her own reaction time. Report the average time of your results as your reaction
time. Estimate the error on your measurement according to the simple prescription of
sec. 1.5.2: in the case of three measurements, the error estimate is one half the difference
between the highest and lowest measurements. Either convert each measurement of distance
to a time and analyze the time spread; or analyze the spread of distances and use eqs. (3)
and (16) to propagate the error according to

σt

t
=

1

2

σy

y
. (4)

1.3.3 Electronic Timing

As the final measurement of your reaction time you can use the timing capabilities of the
PC by the lab bench. Your partner will start the timer via a push-contact and you will stop
it as quickly as possible via a second push contact. Repeat the measurement 25 to reduce
the uncertainty in your result from fluctuations.

If the PC is in Windows then Exit. The dos directory for the timer software is c:\timer.
Start the program by typing pt. From the main menu select Pulse Timing Modes using the
arrow keys, then Pulse 1-2, then choose one of the display types such as Times Displayed in
Large Digits and press Enter/Return). The timer is now live.
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Determine which key is the start and which is the stop, and practice taking measurements.
The person who starts the timer should avoid giving advance clues as to when he/she will
start! A data set is ended by typing Enter on the PC, and you can cycle thru the menus to
start a new set if needed.

The computer may be set up to emit a sound once the timer is started. You can turn
this option on or off via Other Options on the main menu.

After a data set has been collected press Enter and then select Display Table of Data. You
can view a summary of the results by scrolling down with the arrow key, or jumping to the
end with the End key. The average = Mean, standard deviation = SD and standard deviation
of the mean = SDOM have been calculated using well-known formulae found in secs. 1.5.4
and 1.5.6. The standard deviation of the mean is the error estimate on your reaction time.

Does the new measurement of your reaction time agree within errors with that found in
part 1.3.2?

If you feel the results are not of sufficient quality, repeat the whole set of measurements
(rather than, say, using the computer to edit out data points that you don’t like).

If you are satisfied with the results, save your timer data to a hard-disk file. From the
Data Analysis Options menu select File Options and then Save Data to a File. Enter a unique
file name of up to 8 characters and add .dat. Write this file name in your lab notebook!

Use Print Table of Data to obtain a copy for your lab notebook.
Occasionally the print functions hangs in program pt. To reinitialize, first Save any useful

data, then Quit the pt program. Type Install; choose VGA, then Hewlett-Packard Laserjet IIP,
then Portrait – Full Page. Accept the default options for the next two screens to exit the
Install program. Re-enter program pt and Load Data from Disk if appropriate.

1.4 Histogram of Your Reaction Times

As a final step in the analysis of your reaction time it is useful to make a histogram of
the data. This graph can give a quick check as to whether your numerical analysis was
reasonable, and could reveal any unusual patterns in the data.

A histogram is readily made by hand on quadrille-ruled paper. But you may prefer to
use the StatMost spreadsheet statistical analysis package the runs under Windows on the PC.
This will serve as an introduction to some of the PC-based analysis tools that you can use
in lab throughout the course.

A fairly detailed procedure for this follows. See how many of the steps you can accomplish
without reference to the writeup.

Quit the timer program from its main menu, and type win to start windows. Then
select the Physics 101 program group, and then StatMost. Select File, then New, then Sheet
Document to open a new spreadsheet. Again select File and then Import Data. Find the
c:\timer\data directory and your .dat file; then Open it.

In the window that pops up choose Data Type as Delimited by Commas. Your data should
appear in the preview columns A and B. However, the program pt has put header and trailer
rows in the file that StatMost cannot use. Select only those rows that contain the timer
data, probably beginning with row 11 and not including the final row labelled ”EOF”, by
entering appropriate values in the Row boxes of Import Range. Also restrict the Import Range
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to Columns From 1 to 2. Click on Import to transfer your data into the spreadsheet. Save
your spreadsheet now, using the same name as your .dat file but with a .dmd extension.

Figure 1: Example of a histogram of measurements of a variable v. Each
measurement is represented by a box of unit height on the plot. An error
estimate can be obtained from the histogram by determining the interval in v
that contains the central 2/3 of the measurement.

To produce the histogram select Plot, then 2D Special, then Histogram. In the window
that pops up enter your own Title; chose the User Defined option. If you select Draw Normal
Curve a bell curve will be fitted to your data and drawn on the plot. Choose Num. of Intervals
in the range 5-10; some playing is needed here. Choose the column that contains the data
you wish to histogram, probably column B. Click on OK to display the plot; you may have
to drag the boundary of (or maximize) the plot window to see its full extent. If the plot
looks good, Print it from the File menu and tape it into your lab book. Figure 1 shows a
histogram based on reaction-time data.

You can alter the titles and axis labels, or even add additional labels to StatMost plots
after they have been created by double clicking on the desired item and using the window
that pops up.

Check that your data file still has the same mean and standard deviation as found in
the program pt. Click on the spreadsheet window to reactivate it, then select Statistics, then
Descriptive Statistics, then General. In the window that pops up choose the column that
contains the times (column B), and whatever statistical quantities you wish: Mean, Std Dev
and Std Error are useful. Click on OK to generate a window with the summary statistics.

If the histogram of your data doesn’t fit reasonably well to the bell curve you may have
some poor data points. In such a case consider retaking the data.



Princeton University 1996 Ph101 Laboratory 1 6

1.5 Appendix: Error Estimation

While the subject of ‘error analysis’ can become quite elaborate, we wish to emphasize a
basic but quite useful strategy, discussed in secs. 1.5.1 and 1.5.2. A more detailed approach
is based on the famous bell curve, as sketched in secs. 1.5.3-1.5.5. The important distinction
between the error on a single measurement, and the error on the average of many repeated
measurements in reviewed in sec. 1.5.6. The subject of ‘propagation or errors’ on measured
quantities to the error on a function of those quantities is discussed in sec. 1.5.7.

1.5.1 67% Confidence

Whenever we make a measurement of some value v, we would also like to be able to say that
with 2/3 probability the value lies in the interval [v − σ, v + σ]. We will call σ the ‘error’ on
the measurement. That is, if we repeated the measurement a very large number of times, in
about two thirds of those measurements the value would be in the interval stated.

1.5.2 A Simple Approach

Repeat any measurement three times. Report the average as the value v, and the error σ as

σ =
vmax − vmin

2
. (5)

If you take more than three measurements, you can still implement this procedure with
the aid of a ‘histogram’ such as that produced in sec. 1.4. To estimate the error, determine
the interval in v that contains the central 2/3 of the measurements, and report the error as
1/2 the length of this interval.

1.5.3 The Bell Curve

In many cases when a measurement is repeated a large number of times the distribution of
values follows the bell curve, or gaussian distribution:

P (v) =
e−(v−v̄)2/2σ2

√
2πσ

, (6)

where P (v)dv is the probability that a measurement is made in the interval [v, v + dv], v̄ is
the average (or mean) value, and σ is the ‘standard deviation’ which is usually interpreted
as the ‘error’. See Figure 2.

The Table lists the confidence that a single measurement from a gaussian distribution
falls within various intervals about the mean. If the 200 students in Ph101 each make 50
measurements during this lab, then 10,000 measurements will be taken in all. The Table
tells us that if those measurements have purely gaussian ‘errors’, then we expect only one of
those measurements to be more than 4σ from the mean.
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Figure 2: The gaussian probability distribution for mean v̄ = 0 and standard
deviation σ = 1. The interval [v̄ − σ, v̄ + σ] contains 68% of the distribution.

Table 1: The probability (or confidence) that a measurement of a gaussian-
distributed quantity falls in a specified interval about the average.

Interval Confidence

±σ 68%

±2σ 95%

±3σ 99.7%

±4σ 99.994%

1.5.4 Estimating Errors When Large Numbers of Measurements Are Made

One can make better estimates of errors if the measurements are repeated a larger number
of times. If n measurements are made of some quantity resulting in values vi, i = 1, ...n
then the mean is of course

v̄ =
1

n

n∑
i=1

vi, (7)
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and the standard deviation of the measurements is

σ =

√√√√ 1

n − 1

n∑
i=1

(vi − v̄)2. (8)

Calculus experts will recognize that the operation (1/n)
∑n

i=1 becomes
∫

P (v)dv in the limit
of large n; then using the gaussian probability distribution given above one verifies that

v̄ = 〈v〉 =
∫ ∞

−∞
vP (v)dv, and σ2 = 〈(v − v̄)2〉 =

∫ ∞

−∞
(v − v̄)2P (v)dv. (9)

1.5.5 The Error on a Uniformly Distributed Quantity

Not all measurable quantities follow the gaussian distribution. A simple example is a quantity
with a uniform distribution, say with values v equally probable over the interval [a, b]. It
is clear that the average measurement would be (a + b)/2, but what is the error? If we
adopt the simple prescription advocated in secs. 1.1.1 and 1.1.2 we would report the error
as (b− a)/3 since 2/3 of the time the measurement would fall in an interval 2(b− a)/3 long.
If instead we use the calculus prescription for σ given in eq. (9) we find that

σ =
b − a√

12
=

b− a

3.46
, (10)

which result is often used by experts.

1.5.6 The Error on the Mean

Thus far we have considered only the ‘error’ or spread in measured values of some quantity v.
A related but different question is what is the error on the mean value of our measurements,
v̄ = (1/n)

∑
vi. The error on the mean v̄ is surely less that the error, σ, on each measurement

vi. Indeed, the error on the mean is given by

σv̄ =
σ√
n

, (11)

where σ is our estimate of the error on an individual measurement obtained by one of the
methods sketched previously.

1.5.7 The Error on a Derived Quantity

In many cases we are interested in estimating the error on a quantity f that is a function
of measured quantities a, b, ..., c. If we know the functional form f = f(a, b, ..., c) we
can estimate the error σf using some calculus. As a result of our measurements and the
corresponding ‘error analysis’ we know the mean values of a, b, ..., c and the error estimates
σa, σb, ..., σc of these means. Our best estimate of f is surely just f(a, b, ..., c) using the
mean values.

To estimate the error on f we note that the change in f due to small changes in a, b, ... c
is given by

Δf =
∂f

∂a
Δa +

∂f

∂b
Δb + ... +

∂f

∂c
Δc. (12)
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If we just averaged this expression we would get zero, since the ‘errors’ Δa, ... Δc are some-
times positive, sometimes negative, and average to zero. Rather, we square the expression
for Δf , and then average:

Δf2 =

(
∂f

∂a

)2

Δa2 + ... +

(
∂f

∂c

)2

Δc2 + ... + 2
∂f

∂a

∂f

∂c
ΔaΔc + ... (13)

On average the terms with factors like ΔaΔc average to zero (under the important assump-
tion that parameters a, b, ... c are independent). We identify the average of the squares of
the changes relative to the mean values as the squares of the errors: 〈Δa2〉 = σ2

a, etc. This
leads to the prescription

σ2
f =

(
∂f

∂a

)2

σ2
a + ... +

(
∂f

∂c

)2

σ2
c + ... (14)

Some useful examples are

f = a ± b± ... ± c ⇒ σf =
√

σ2
a + σ2

b + ... + σ2
c , (15)

and

f = albm...cn ⇒ σf

f
=

√
l2
(

σa

a

)2

+ m2

(
σb

b

)2

+ ... + n2

(
σc

c

)2

, (16)

where l, m and n are constants that may be negative.




