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1 Problem

A cylinder of relative dielectric constant εr rotates with constant angular velocity ω about
its axis. A uniform magnetic field B is parallel to the axis, in the same sense as ω. Find
the resulting dielectric polarization P in the cylinder and the surface and volume charge
densities σ and ρ, neglecting terms of order (ωa/c)2, where a is the radius of the cylinder.

This problem can be conveniently analyzed by starting in the rotating frame, in which
P′ = P and E′ = E+v×B, when (v/c)2 corrections are neglected. Consider also the electric
displacement D.

2 Solution

The v × B force on an atom in the rotating cylinder is radially outwards, and increas-
ing linearly with radius, so we expect a positive radial polarization P = P r̂ in cylindrical
coordinates.

There will be an electric field E inside the dielectric associated with this polarization. We
now have a “chicken-and-egg” problem: the magnetic field induces some polarization in the
rotating cylinder, which induces some electric field, which induces some more polarization,
etc.

One way to proceed is to follow this line of thought to develop an iterative solution for
the polarization. This is done somewhat later in the solution. Or, we can avoid the iterative
approach by going to the rotating frame, where there is no interaction between the medium
and the magnetic field, but where there is an effective electric field E′.

2.1 Solution via the Rotating Frame

However, we must be cautious when using the rotating frame as to what part of the lore of
nonrotating frames still applies.

In the rotating frame, any polarization charge density is at rest, and so does not interact
with the magnetic field. Individual molecules are polarized by the effective field E′ according
to p′ = αE′, where α is the (scalar) molecular polarizability, whose value is that same in
any frame in which the molecules are at rest. Summing up the microscopic polarization, we
obtain the macroscopic polarization density (in the rotating frame),

P′ = χE′, (1)

where E′ and P′ are the electric field and dielectric polarization in the rotating frame, and χ
is the (scalar) dielectric susceptibility. If v = ωr � c, then the electric field in the rotating
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frame is related to lab frame quantities by

E′ = E +
v

c
× B, (2)

where E is the electric field due to the polarization that we have yet to find. Since polarization
is charge times distance, in the nonrelativistic limit the polarization is the same in the lab
frame and the rotating frame: P′ = P.1

We do NOT expect that E′ = 0 (as would hold in the rest frame of a conductor with no
external emf’s2), since the polarization would vanish in this case.

The velocity has magnitude v = ωr, and is in the azimuthal direction. Thus, v × B =
ωBr, so that

P = χ
(
E +

ωB

c
r
)

. (3)

We need an additional relation to proceed. The suggestion is to consider the electric
displacement D. But, in which frame? This is the trickiest point in the problem. In the
rotating (rest) frame of the dielectric, we expect that D′ = εrE

′ and (naively) that ∇′ ·D′ =
4πρ′

free, where ρ′
free = ρfree in the nonrelativistic limit. Since ρfree = 0 in the lab frame for this

problem, the preceding arument would imply that D′ = 0, and hence that E′ = 0, which in
turn implies that P′ = P = 0, which is not the case!

It’s safer to consider the displacement in the lab frame, where we know that ρfree = 0, and
hence that D = 0 since it has no sources. But we do not necessarily expect that D = εrE
in the lab frame, because in this frame we consider that the magnetic field is causing some
of the polarization. So, we invoke the basic relation between D, E and P to write

D = 0 = E + 4πP. (4)

Thus,
E = −4πP (5)

is the additional relation that we need. Recalling that χ = (εr − 1)/4π, (3) leads to

P =
εr − 1

4πcεr
ωBr. (6)

The surface charge density is

σpol = P(a) · r̂ =
εr − 1

4πcεr
ωBa, (7)

where a is the radius of the cylinder. As well as this surface charge density, there is a volume
charge density,

ρpol = −∇ · P = −1

r

∂rPr

∂r
= −εr − 1

2πcεr

ωB, (8)

1For a more extensive discussion, see K.T. McDonald, Electrodynamics of Rotating Systems (Aug, 8,
2008), http://physics.princeton.edu/~mcdonald/examples/rotatingEM.pdf

2K.T. McDonald Conducting Sphere That Rotates in a Uniform Magnetic Field (Mar. 13, 2002),
http://physics.princeton.edu/~mcdonald/examples/rotatingsphere.pdf
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so that the cylinder remains neutral over all.
Both the surface and volume charge densities are proportional to v(r)/c, and are moving

at velocity v(r). Hence, the magnetic field created by these charges is of order v2/c2, and we
neglect it in this analysis.

This example is perhaps noteworthy in that a nonvanishing, static volume charge density
arises in a linear dielectric material (with no external charges). In pure electrostatics this
cannot happen, since P = χE together with ∇ · D = 0 = ∇ · E + 4π∇ · P imply that
ρpol = −∇ · P = 0.

We can now go back and examine the fields E′ and D′ = εrE
′ in the rotating frame.

Combining eqs. (2), (5) and (6) we find

E = −(εr − 1)
ωB

cεr
r, E′ =

ωB

cεr
r, and hence D′ =

ωB

c
r. (9)

If the relative dielectric constant εr were unity (as if the cylinder were a vacuum), then eq. (9)
tells us that the lab electric field would vanish, as expected. The result that D′ = ωBr/c is
independent of the dielectric constant, and holds even if the cylinder were empty. The fact
that ∇′ ·D′ = 2ωB/c �= 0 would imply that ρ′

free �= 0 IF ∇′ ·D′ = 4πρ′
free. Since this cannot

be, we must re-examine our assumptions.
A useful excerise is to transform the lab-frame Maxwell equation ∇ · D = 4πρfree into

the rotating frame. For this, we note that D = E + 4πP transforms (in the nonrelativistic
limit) to E′ − v/c × B′ + 4πP′, and that ρfree transforms to ρ′

free. Hence our transformed
Maxwell equation is ∇′ · (E′ − v/c × B′ + 4πP′) = 4πρ′

free. If we suppose that the electric
displacement in the rotating frame obeys the basic definition D′ = E′ + 4πP′, then

∇′ · D′ = 4πρ′
free + ∇′ · v

c
× B′. (10)

In the present problem, B′ = B to first order, and ∇′ = ∇, so v/c × B′ = ωBr/c, whose
divergence is 2ωB/c, which is the value for ∇·D′ found above. Hence, we retain consistency
with ρ′

free = 0 while having a nonzero displacement D′ in the rotating frame.
Experts will note that the result D′ = ωBr/c is consistent with the (nonrelativistic) field

transformation3

D′ = D +
v

c
×H, (11)

since in the present problem D = 0 and H = B. Further, experts know that the lab frame
relation of the displacement D to the field E involves the magnetic field H as well, according
to (in the nonrelativistic limit)

D = εrE + (εrμr − 1)
v

c
× H. (12)

Then, using E from eq. (9), plus μr = 1 and B = H again leads to the result that D = 0 in
the lab frame.

3See chap. E III of R. Becker, Electromagnetic Fields and Interactions (Dover, New York, 1964).
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For the record, we pursue the consequence of supposing that since there is no free
charge in this problem, the displacement obeys D′ = 0 in the rotating frame. Then,
since D′ = εE′ we have that E′ = 0, and eq. (1) implies that P′ = P = 0 also.
But, eq. (2) now tells us that E = −ωBr/c �= 0, so that D = E + 4πP = E, and
∇ ·D = −2ωB/c �= 0, independent of the dielectric constant. The rotating cylinder
could be imaginary, and the above analysis still should hold. This is implausible.

2.2 Iterative Solution in the Lab Frame

The preceding analysis via the rotating from was somewhat tricky, so it is desirable to confirm
the results by another method. Hence, we consider an iterative solution.

The axial magnetic field acts on the rotating molecules to cause a v × B force radially
outwards. This can be described by an effective electric field

E0 =
ωB

c
r. (13)

This field causes polarization

P0 = χE0 = χ
ωB

c
r. (14)

Associated with this is the uniform volume charge density

ρ0 = −∇ · P0 = −2χωB. (15)

According to Gauss’ Law, this charge density sets up a radial electric field

E1 = 2πρ0r = −4πχωBr. (16)

At the next iteration, the total polarization is

P1 = χ(E0 + E1) = χ(1 − 4πχ)
ωB

c
r. (17)

This polarization implies a bound charge density ρ1, which leads to a correction to field E0

that we call E2, ...
At the nth iteration, the polarization will have the form

Pn = kn
ωB

c
r. (18)

Then, the bound charge density is

ρn = −∇ · Pn = −2knωB, (19)

which implies that the correction to the electric field becomes

En+1 = 2πρnr = −4πknωBr. (20)

The effective electric field at iteration n + 1 is the sum of E0 due to the v × B force and
En+1 due to the polarization charge. Thus,

Pn+1 = χ(E0 + En+1) = χ(1 − πkn)
ωB

c
r. (21)
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But by definition,

Pn+1 = kn+1
ωB

c
r. (22)

Hence,
kn+1 = χ(1 − 4πkn). (23)

If this sequence converges to the value k, then we must have

k = χ(1 − 4πk), (24)

so that

k =
χ

1 + 4πχ
=

εr − 1

4πεr
, (25)

which again gives (3) for the polarization.
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